
ScreenSpot-Pro: GUI Grounding for Professional High-Resolution
Computer Use

Kaixin Li
likaixin@u.nus.edu

National University of Singapore
Singapore

Ziyang Meng
51255901089@stu.ecnu.edu.cn
East China Normal University

Shanghai, China

Hongzhan Lin
linhongzhan1997@gmail.com
Hong Kong Baptist University

Hong Kong, China

Ziyang Luo
zluo@salesforce.com
Salesforce Research

Singapore

Yuchen Tian
yctian@comp.hkbu.edu.hk

Hong Kong Baptist University
Hong Kong, China

Jing Ma
majing@comp.hkbu.edu.hk

Hong Kong Baptist University
Hong Kong, China

Zhiyong Huang
dcshuang@nus.edu.sg

National University of Singapore
Singapore

Tat-Seng Chua
chuats@comp.nus.edu.sg

National University of Singapore
Singapore

Abstract
Recent advancements inMulti-modal Large LanguageModels (MLLMs)
have led to significant progress in developing GUI agents for gen-
eral tasks such as web browsing and mobile phone use. However,
their application in professional domains remains under-explored.
These specialized workflows introduce unique challenges for GUI
perception models, including high-resolution displays and com-
plex environments which lead to smaller target sizes. In this pa-
per, we introduce ScreenSpot-Pro, a new benchmark designed
to rigorously evaluate the grounding capabilities of MLLMs in
high-resolution professional settings. The benchmark comprises
authentic high-resolution images from a variety of professional
domains with expert annotations. It spans 23 applications across
five industries and three operating systems. Existing GUI ground-
ing models perform poorly on this dataset, with the best model
achieving only 18.9%. Our experiments reveal that strategically
reducing the search area enhances accuracy. Based on this in-
sight, we propose ScreenSeekeR, a visual search method that
utilizes the GUI knowledge of a strong planner to guide a cas-
caded search, achieving state-of-the-art performance with 48.1%
without any additional training. We hope that our benchmark and
findings will advance the development of GUI agents for profes-
sional settings. The code, data and benchmark are available at
https://gui-agent.github.io/grounding-leaderboard/.

CCS Concepts
• Computing methodologies→ Artificial intelligence.

Keywords
GUI Grounding, GUI Agent, Multi-modal Large Language Models

This work is licensed under a Creative Commons Attribution 4.0 International License.
MM ’25, Dublin, Ireland
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2035-2/2025/10
https://doi.org/10.1145/3746027.3755688

ACM Reference Format:
Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma,
Zhiyong Huang, and Tat-Seng Chua. 2025. ScreenSpot-Pro: GUI Grounding
for Professional High-Resolution Computer Use. In Proceedings of the 33rd
ACM International Conference on Multimedia (MM ’25), October 27–31, 2025,
Dublin, Ireland. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3746027.3755688

1 Introduction
Imagine a future where the everyday burdens of repetitive com-
puter tasks are lifted, unleashing people’s full productivity and
creativity. A GUI agent capable of taking over the mundane opera-
tions of complex professional applications like Visual Studio Code,
AutoCAD, Photoshop, could greatly enable computer users to focus
exclusively on the work that truly matters. Recent advancements in
Multi-modal Large Language Models (MLLMs) [2, 11, 18, 19] have
significantly invigorated this pursuit, driving intensive research
efforts in creating pure-vision based GUI agent models that can
directly interact with electronic devices that are integral to modern
life [8, 28].

However, many existing studies primarily address general and
easy tasks, such as general computer control [3, 9], web browsing [4,
10, 26], lifestyle and utility apps [12, 25]. In contrast, professional
applications remain largely unexplored, with only a few works
featuring specialized tasks such as coding in VSCode [23]. These
software are designed to provide a comprehensive suite of advanced
features, catering to specialized tasks and workflows, and are thus
fundamental in productivity and creative industries. Developing
GUI agent systems could not only reduce the manual burden of
repetitive actions but also enhance productivity and lower the
barrier to entry for non-expert users.

To advance toward this vision, we focus on a previously under-
explored challenge: GUI grounding in professional, high-resolution
software environments. Given a natural language instruction and
a screenshot, the goal is to ground the instruction to the precise
location of the target UI element. The primary challenges in apply-
ing GUI grounding models to these professional applications are

8778

https://orcid.org/0009-0007-9842-3552
https://orcid.org/0009-0001-5379-8461
https://orcid.org/0000-0002-4111-8334
https://orcid.org/0000-0002-6037-0471
https://orcid.org/0009-0000-1437-0270
https://orcid.org/0000-0002-7464-8331
https://orcid.org/0000-0002-1931-7775
https://orcid.org/0000-0001-6097-7807
https://gui-agent.github.io/grounding-leaderboard/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746027.3755688
https://doi.org/10.1145/3746027.3755688
https://doi.org/10.1145/3746027.3755688
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746027.3755688&domain=pdf&date_stamp=2025-10-27

MM ’25, October 27–31, 2025, Dublin, Ireland Kaixin Li et al.

2.0
e-1

1.4
e-1

9.4
e-2

6.4
e-2

4.4
e-2

3.0
e-2

2.1
e-2

1.4
e-2

9.7
e-3

6.6
e-3

4.5
e-3

3.1
e-3

2.1
e-3

1.5
e-3

1.0
e-3

6.8
e-4

4.7
e-4

3.2
e-4

2.2
e-4

1.5
e-4

Target Box Area Relative to Image Size

0

100

200

300

400

500

600

Nu
m

be
r o

f I
ns

ta
nc

es

Instances

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 %

SeeClick
OS-Atlas
UGround
Qwen2-VL

Figure 1: Performance of the expert GUI grounding models
SeeClick [3], OS-Atlas-7B [22], UGround [5], and the gen-
eralist MLLM Qwen2-VL-7B [19] on the ScreenSpot-v2 GUI
grounding benchmark [22]. The elements on the x-axis are
arranged in logarithmically decreasing order, representing
their relative size in the entire image. There is a universal
decrease in accuracy as the target box size becomes smaller.

threefold: (1) the significantly greater complexity of professional ap-
plications compared to general-use software, which often requires
higher resolutions that may be difficult for existing MLLMs to han-
dle; (2) as user interfaces are typically designed with fixed pixel
sizes and users need to display more content on the screen, the in-
creased resolution results in smaller relative target sizes within the
screenshot. This often leads to poorer performance of GUI ground-
ing models, as we demonstrate in Figure 1; (3) professional users
frequently rely on supplementary documents and external tools to
assist their workflows, further complicating the screen and intro-
ducing additional challenges for GUI understanding. Consequently,
even if the MLLMs are able to comprehend the user instructions, it
is difficult for them to ground the instructions into precise locations
in such complex screenshots.

To fill the notable gap in research on GUI operations in profes-
sional environments, we introduce ScreenSpot-Pro, a novel GUI
grounding benchmark that includes 1,581 expert-annotated instruc-
tions in their authentic workflows, each in a unique screenshot.
They are sourced from 23 applications in five types of industries,
as well as common usages in 3 operating systems. ScreenSpot-Pro
differentiates itself from previous grounding benchmarks [3, 15, 22]
in that: (1) Data Diversity: ScreenSpot-Pro includes authentic high-
resolution images and tasks from a wide range of professional
applications and domains, beyond simple web browsing or mo-
bile use, reflecting the complexity and variety of real-world pro-
fessional scenarios; (2) Applicability: ScreenSpot-Pro provides full
screenshots, avoiding the unrealistic evaluation of GUI grounding
in cropped local regions; (3) Quality: ScreenSpot-Pro is annotated
by professional users, ensuring rigorous quality control to maintain
the validity of test samples, thereby guaranteeing reliable and mean-
ingful evaluation results. A visual comparison of ScreenSpot-Pro
and ScreenSpot [3], a widely-used GUI grounding benchmark, is
presented in Figure 2.

Through extensive experiments, we found that strategically nar-
rowing the search area within an image leads to significant perfor-
mance improvements. Building on this insight, we propose several

Sound settings

960 × 540

(a) ScreenSpot

Add a new pattern

2560 × 1440

(b) ScreenSpot-Pro (Ours)

Figure 2: ScreenSpot [3] (left) vs ScreenSpot-Pro (right).
ScreenSpot-Pro features screenshots of the entire screen,
while ScreenSpot contains unrealistic screenshots cropped
to local areas. Targets are highlighted in red boxes.

baseline methods for the task, including ScreenSeekeR, an agentic
framework designed as a baseline approach for GUI grounding in
high-resolution environments. It leverages the inherent hierarchical
structures in GUI screenshots and the rich GUI-related knowledge
within the MLLM planner to guide the search process. Instead of
directly identifying the target UI element, it systematically reasons
over user instructions to predict the most probable regions. These
regions are progressively cropped to remove irrelevant distractions,
allowing the grounding model to operate on a simplified subarea of
the image. With this approach, ScreenSeekeR boosts the OS-Atlas-
7B [22] model’s performance from 18.9% to 48.1%, achieving a 254%
relative improvement. This finding, along with ScreenSpot-Pro, of-
fers essential insights that could guide the development of future
advanced GUI grounding models.

Our contribution is summarized as follows:

• We present ScreenSpot-Pro, a novel benchmark for GUI
groundingwith authentic tasks collected from 26 high-resolution
professional desktop environments.
• We identify key challenges in GUI grounding and introduce
baseline methods performing visual search to tackle the diffi-
culties posed by the high resolution and small relative target
sizes.
• We propose ScreenSeekeR, an agentic framework for adapt-
ing existing GUI grounding models to perform visual search
in high-resolution screenshots in a training-free fashion,
achieving state-of-the-art performance on ScreenSpot-Pro.

2 Related Works
2.1 GUI Grounding
The aspiration to build autonomous agents that assist humans in
daily tasks has long captivated researchers. Recently, Multimodal
Large Language Models [17–19] have demonstrated remarkable
progress in image understanding and reasoning. These advance-
ments have greatly inspired applications in GUI agents to process
both visual and linguistic inputs, allowing them to handle a wider
range of tasks [6, 7, 25, 29, 30]. A fundamental aspect of GUI agents
is grounding, which translates high-level plans into executable ac-
tions located on the screen. Leveraging the capabilities of MLLMs,
GUI grounding models [3, 5, 22, 24] are fine-tuned on large-scale

8779

ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use MM ’25, October 27–31, 2025, Dublin, Ireland

Dev

Cr
ea

tiv
e

CAD

Sci

O
ffi

ce

OS

Android Studio (80)

PyCharm (78)

VSCode (55)
VMware (41)Photoshop (5

1)

Blen
de

r (
71

)

Pr
em

ie
re

 (5
2)

D
aV

in
ci

 R
es

ol
ve

 (4
4)

Ill
us

tr
at

or
 (3

1)

FruitLoops (57)

AutoCAD (34)

SolidW
orks (77)

Inventor (70)Quartus (45)

Vivado (80)

EViews (50)

Stata (49)

MATLAB (93)

Po
wer

Po
in

t (
82

)

Ex
ce

l (
64

) W
ord (84)

Linux (50)

M
ac (65)

Windows (81)

(a) Software categories and the number of
tasks.

2560 x 1440
(32.4%)

3840 x 2160
(17.0%)

3840 x 1080
(11.4%)

3456 x 2234
(10.2%)

2160 x 1440
(6.4%)

2880 x 1800
(5.2%)

5120 x 2880
(4.4%)

5120 x 1440
(3.9%)

3456 x 2160
(3.1%)

2560 x 1664
(3.0%)

Others
(2.9%)

Resolutions

(b) Resolution distribution.

0%
5%

10%
15%

20%
25%

30%

Dev

CreativeCAD

Sci

Office OS

OSAtlas-4B
OSAtlas-7B
UGround-7B
ShowUI-2B
SeeClick-7B
MiniCPM-V-8B
CogAgent-18B
Qwen2VL-7B
QwenVL-7B

(c) Results of representative GUI Ground-
ing models across 6 categories of applica-
tions.

Figure 3: Task distribution and benchmark results of ScreenSpot-Pro.

text-position pairs extracted from screenshots. This process signif-
icantly enhances their ability to align language commands with
visual elements, improving the accuracy and effectiveness of GUI
agents in real-world applications.

To evaluate GUI grounding abilities, previous benchmarks have
primarily focused on simple tasks such as web browsing and mobile
interactions. However, these benchmarks oversimplify the prob-
lem. For instance, ScreenSpot [3] facilitates artificial screenshots by
cropping regions from full-screen images. ScreenSpot-v2 [22] fixes
annotation errors in ScreenSpot. VisualWebBench [15] reformu-
lates location prediction as multiple-choice questions by providing
candidate targets. Furthermore, these benchmarks overlook the
importance and challenge of productivity tools in professional set-
tings. To address these limitations, we introduce ScreenSpot-Pro, a
benchmark designed to provide a more rigorous evaluation of GUI
grounding in high-resolution professional environments.

2.2 Processing High Resolution Images
Though several approaches have been proposed to tackle the chal-
lenge of processing high-resolution images in MLLMs, including
resolution scaling [2] and simple cropping [8, 14], these methods
struggle to perform effectively at ultra-high resolutions due to
inherent model limitations, such as short context lengths and low-
resolution training data. For instance, UGround [5] supports res-
olutions up to 1344 × 1344, while QwenVL [1] operates at 448
× 448. Further increasing input resolutions necessitates innova-
tive model architectures and significant computational resources
for retraining. An alternative approach involves utilizing visual
search techniques [20, 21]. However, these methods depend on pre-
defined splitting strategies, which constrain search flexibility and
may result in missing contextual information in GUI environments.
Moreover, V* [21] requires training the MLLM with an additional
segmentation module to generate guidance maps, which makes it
impractical for GUI tasks due to the diversity of UI functionalities,
compounded by the lack of large available datasets.

3 ScreenSpot-Pro: Benchmarking GUI
Grounding for Professional High-Resolution
Computer Use

In this section, we introduce the data collection range, criteria,
processing procedure, quality control measures, and provide a sta-
tistical overview of ScreenSpot-Pro.

3.1 Scope of Data Collection
ScreenSpot-Pro includes six distinct application genres, with a pri-
mary focus on four types of professional applications. Additionally,
it features office productivity software and common operating sys-
tem tasks. A detailed list of the collection can be found in Table 1.
These categories include:

Development and Programming. Development and programming
software supports the entire lifecycle of software development, from
writing code to debugging and testing applications. These tools
provide integrated environments that enhance productivity and
collaboration, offering features like syntax highlighting, version
control integration, and debugging tools. The applications in this
category include VSCode (code editor), PyCharm (Python IDE),
Android Studio (Android app development), and Quartus (FPGA
programming). Additionally, virtualization is critical for creating
scalable computing solutions and managing virtual environments,
so we also include VMware Fusion (virtual machine management).

Creative Software. Creative software includes applications de-
signed for the creation and editing of visual, audio, and video con-
tent. These tools are essential in industries such as graphic design,
video production, and music composition, enabling professionals
to produce high-quality media for various platforms. The tools in
this category include Photoshop (image editing), Premiere (video
editing), Illustrator (vector graphic design), FruitLoops Studio
(music production), DaVinci Resolve (color grading and video
editing), Unreal Engine (game engine and 3D simulation), and
Blender (3D modeling and animation).

8780

MM ’25, October 27–31, 2025, Dublin, Ireland Kaixin Li et al.

Computer-Aided Design (CAD) and Engineering. CAD and engi-
neering software are used to design and model physical objects and
systems. These applications are vital in fields such as engineering,
architecture, and product manufacturing, where precision design
and simulation are required. They enable professionals to create
detailed 2D drawings, 3D models, and simulate the behavior of me-
chanical structures. The tools in this category include AutoCAD
(2D/3D design), SolidWorks (3D CAD and simulation), Inven-
tor (mechanical design), and Vivado (circuit design and FPGA
programming).

Scientific and Analytical. Scientific and analytical software is
designed for data analysis, numerical computation, and mathemat-
ical modeling. These applications are indispensable in fields like
research, engineering, and data science, providing robust environ-
ments for analyzing large datasets, solving complex mathematical
problems, and running simulations. The software in this category
includesMATLAB (numerical computation and algorithm devel-
opment), Origin (data analysis and scientific visualization), Stata
(statistical analysis), and EViews (econometric modeling).

Office Software. Office software includes applications designed to
facilitate productivity in tasks such as document creation, data anal-
ysis, communication, and presentation. These tools are widely used
across various industries to manage workflows and support col-
laborative environments. Key applications in this category include
Word (word processing), Excel (spreadsheets and data analysis),
PowerPoint (presentation design).

Operation System Commons. Apart from professional software,
ScreenSpot-Pro also includes basic operating system operations to
evaluate models in high-res environments. These samples are re-
ferred to as Operating System Commons, encompassing the general
use and interaction with an OS. These include file management, sys-
tem utilities, etc., that are fundamental to day-to-day tasks on any
OS. For this category, we include Windows, macOS, and Linux.

3.2 Collection Method and Criteria
ScreenSpot-Pro captures realistic tasks in real-world challenges
across various platforms and applications. Experts with at least five
years of experience using the relevant applications were invited to
record the data. They were instructed to perform their regular work
routine to ensure the authenticity of the tasks whenever possible.
To minimize disruptions to their workflow, we developed a silently
running screen capture tool, accessible through a shortcut key.
When activated, this tool takes a screenshot and overlays it on the
screen, allowing experts to label the bounding boxes and provide
instructions directly. This method enhances the consistency and
quality of the annotations, as experts can label tasks in real-time
without the need to recall the purposes and context of their actions
in hindsight.

To obtain authentic high-resolution images, we prioritized screens
with a resolution greater than 1080p (1920 × 1080), a configuration
commonly found among annotators. Monitor scaling was disabled.
In dual-monitor setups, images were captured to span both displays.

Following SeeClick [3], we also specify the type of the target
element, categorizing it as either text or icon. We refined the classi-
fication criteria to better discriminate ambiguous cases where icons

Table 1: List of software collected in ScreenSpot-Pro.

Icon Abbr. Application Edition & Version OS Icons Texts

Development and Programming
VSC Visual Studio Code 1.95 macOS 22 33
PyC PyCharm 2023.3 macOS 38 40
AS Android Studio 2022.2 macOS 44 36
Qrs Quartus II 13.0 SP1 Windows 32 13
VM VMware Fusion 13.6.1 macOS 9 32

Creative
PS Photoshop 2020 Windows 25 26
PR Premiere 2025 Windows 24 28
AI Adobe Illustrator 2025 Windows 19 12
Bl Blender 4.0.2 Windows 15 56
FL FruitLoops Studio 20.8.3 Windows 31 26
UE Unreal Engine 5.4.4 Windows 6 29
DR DaVinci Resolve 19.0.3 macOS 23 21

CAD and Engineering
CAD AutoCAD Mechanical 2019 Windows 7 27
SW SolidWorks Premium 2018 x64 Windows 14 63
Inv Inventor Professional 2019 Windows 11 59
Vvd Vivado 2018.3 Windows 32 48

Scientific and Analytical
MAT MATLAB R2022b Windows 19 74
Org Origin 2018 Windows 43 19
Stt Stata SE 16 Windows 41 8
Evw EViews 10 Windows 7 43

Office Suite
Wrd Word Office 365 (16.90) macOS 15 69
PPT PowerPoint Home and Student 2019 Windows 25 57
Exc Excel Office 365 (16.82) macOS 13 51

Operating System Commons
Win Windows 11 Professional - 47 34
mac macOS Sonoma 14.5 - 23 42
Lnx Linux Ubuntu 24.04 - 19 31

are accompanied by text labels, which is common in AutoCAD and
Office suites. Specifically, a target is classified as icon only when no
text hints are present. If text labels are present, the target is labeled
as text, even if an icon is included.

3.3 Quality Control
ScreenSpot-Pro has undergone strict quality control to ensure its
high-quality in three notable aspects.

Task Validity. Each instance in the dataset is reviewed by at least
two annotators to ensure its correctness. Specifically, we removed
instructions that caused ambiguity: each instruction must refer to,
and only to, a single area in the image. It is also guaranteed that
all instructions can be executed directly on the screenshot without
requiring further actions, such as switching to other windows,
opening menus, or right-clicking.

Target Box Precision. To ensure precise and reliable annotations,
the annotations are required to tightly encompass all parts of in-
teractable regions. For instance, the bounding box for a menu item
should not only include the visible text but also extend to cover
its full clickable area. This approach minimizes ambiguity in the
bounding boxes, providing a more accurate representation of the
elements for rigorous evaluation.

8781

ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use MM ’25, October 27–31, 2025, Dublin, Ireland

UI Structure

(a) Splitting

UI Structure

(b) Narrowing

UI Structure

(c) Structural

Figure 4: Comparison of visual search strategies used by
methods.

Algorithm 1 ScreenSeekeR
1: Input: Instruction𝑇 , Image 𝐼img, Max Depth 𝐷max, Min Size 𝑆min
2: Output: Target Bounding Box 𝑏
3: function VisualSearch(𝑇, 𝐼, 𝐷max, 𝑆min, 𝑑)
4: 𝑑 ← 0, 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 ← (0, 0, 1, 1)
5: if 𝑑𝑒𝑝𝑡ℎ ≥ 𝐷max or 𝐼img too small then
6: return DirectGrounding(𝐼 , 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡)
7: end if
8: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← PositionInference(𝑌, 𝐼)
9: 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 ← Ground(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)
10: 𝑑𝑖𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 ← Dilate(𝑝𝑎𝑡𝑐ℎ𝑒𝑠, 𝑆min, 𝑅max)
11: 𝑠𝑐𝑜𝑟𝑒𝑠 ← ScorePatches(𝑛𝑚𝑠_𝑝𝑎𝑡𝑐ℎ𝑒𝑠)
12: 𝑛𝑚𝑠_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 ← NMS(𝑑𝑖𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡𝑐ℎ𝑒𝑠)
13: 𝑠𝑜𝑟𝑡𝑒𝑑_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 ← Sort(𝑛𝑚𝑠_𝑝𝑎𝑡𝑐ℎ𝑒𝑠, 𝑠𝑐𝑜𝑟𝑒𝑠)
14: for each 𝑝𝑎𝑡𝑐ℎ ∈ 𝑠𝑜𝑟𝑡𝑒𝑑_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 do
15: 𝑠𝑢𝑏_𝑖𝑚𝑎𝑔𝑒 ← CropImage(𝐼 , 𝑝𝑎𝑡𝑐ℎ)
16: 𝑏 ← VisualSearch(𝑇, 𝑠𝑢𝑏_𝑖𝑚𝑎𝑔𝑒,𝑑 + 1)
17: if 𝑏 is not None then
18: return 𝑏

19: end if
20: end for
21: return None
22: end function

Icon/Text Classification. During annotation, we observed some
icons accompanied by text. To standardize the criteria, we classify
an element as text if there are hint labels on or around the area,
even if the target is graphical.

3.4 ScreenSpot-Pro Statistics
Figure 3 summarizes the collected GUI data, encompassing many
applications and resolutions, offering a level of diversity unmatched
by previous benchmarks. The text constitute 62.6% of the elements,
with the remainder being icons. Notably, targets in ScreenSpot-
Pro occupy 0.07% of the screenshot area on average, a significant
reduction compared to 2.01% of ScreenSpot [3].

4 Baseline Methods
In this section, we present five baseline methods evaluated on
the ScreenSpot-Pro benchmark. We begin with a straightforward
approach that utilizes the powerful the GPT-4o [18] model to refine
the instructions. Recognizing that the primary challenge stems
from the high resolution of the screenshots and the small size of
UI targets, we then propose planner-free visual search strategies
that employ multi-round grounding to progressively reduce the
search area. Lastly, we introduce ScreenSeekeR, a method that

leverages guidance from a MLLM planner to further improve the
search process.

4.1 GPT Instruction
In line with prior work such as UGround [5] and OS-Atlas [22],
we leverage GPT-4o to examine the screenshot and generate a
rewritten detailed instruction optimized for the grounding model.
The prompt used are listed in the supplementary materials.

4.2 Planner-Free Visual Search Methods
Iterative Splitting (Figure 4a). Inspired byV*’s iterative approach [21],

Iterative Splitting first performs grounding directly on the whole
screenshot, and splits the screenshot into smaller patches. At each
step, it chooses the patch the prediction falls into to continue search-
ing within. We always use a 2 row × 2 column splitting strategy.

Iterative Narrowing (Figure 4b). This baseline operates in the
same ground-and-zoom procedure as Iterative Splitting, but the
patches are cropped to center the prediction. The patch size is set to
half the width and height of the image at each step. This approach
closely aligns with a concurrent work [16].

ReGround. We assess a simple baseline that crops the region
surrounding the initial prediction to re-ground and make a final
determination. Comparing to Iterative Narrowing, the size of the
crop is fixed and can be manually configured based on the optimal
input size of the models.

4.3 ScreenSeekeR: An Agentic Grounding
Framework

Unlike natural images, the UI of applications typically follows a
well-defined hierarchy. For example, menus, tools, and properties
are often organized within sub-panels or child windows, provid-
ing potential cues on where to search for a UI target (Figure 4c).
Based on the observation, we propose ScreenSeekeR, adopting the
idea of visual search to address the problem of GUI grounding in
professional high-resolution computer screens.

The core idea behind ScreenSeekeR is to utilize the GUI knowl-
edge of a strong planner (GPT-4o) to generate possible areas to
guide the search. Given a text instruction 𝑇 and an image 𝐼 , the
algorithm begins the search over the entire image and progressively
narrows the search area based on inferred positions. First, the plan-
ner proposes the most possible areas to search within based on the
screenshot. The candidate areas are filtered and scored using the
predictions of the grounder model. Then, the planner continues
to search recursively or terminate if it thinks the target is found.
The algorithm is summarized in Algorithm 1 and an example is
visualized in Figure 5.

Position Inference. The core of the algorithm lies in Position In-
ference, where GPT-4o analyzes the instruction 𝑇 to predict the
potential locations of the target. Initially, it identifies the approx-
imate location of the target UI and predicts a series of areas that
likely enclose the target. It then leverages common knowledge to
infer possible neighboring UI elements in proximity to the target.
For example, a “new” button typically appears near the “delete”
button. This allows the model to generate a set of candidate regions

8782

MM ’25, October 27–31, 2025, Dublin, Ireland Kaixin Li et al.

Table 2: Model Performance by Software. The abbreviations used in the table are defined in Table 1.

Model Development Creative CAD Scientific Office OS AvgAS PyC VSC VM UE PS Bl PR DR AI FL CADSW Inv Qrs Vvd MAT Org Evw Stt PPT Exc Wrd Lnx mac Win

OS-Atlas-7B 8.8 15.4 25.5 34.1 22.9 17.6 22.5 17.3 27.3 3.2 10.5 2.9 3.9 2.9 13.3 26.3 23.7 11.3 54.0 12.2 22.0 12.5 44.0 20.0 20.0 12.3 18.9
UGround (7B) 7.5 7.7 21.8 31.7 20.0 21.6 25.4 17.3 11.4 0.0 14.0 2.9 0.0 7.1 15.6 28.7 23.7 6.5 46.0 0.0 25.6 15.6 36.9 18.0 12.3 2.5 16.5
AriaUI (3.9/25.3B MoE) 0.0 3.8 21.8 2.4 0.0 27.5 26.8 17.3 2.3 0.0 12.3 0.0 1.3 1.4 20.0 17.5 21.5 1.6 44.0 6.1 6.1 1.6 36.9 2.0 3.1 2.5 11.3
ShowUI (2B) 3.8 7.7 5.5 22.0 11.4 5.9 7.0 5.8 0.0 3.2 3.5 0.0 0.0 1.4 15.6 5.0 8.6 12.9 16.0 6.1 9.8 6.3 22.6 4.0 10.8 4.9 7.7
CogAgent (18B) 2.5 5.1 16.4 9.8 2.9 11.8 7.0 7.7 0.0 0.0 5.3 0.0 1.3 0.0 11.1 18.8 16.1 1.6 34.0 2.0 6.1 0.0 21.4 2.0 4.6 2.5 7.7
OS-Atlas-4B 1.3 1.3 12.7 2.4 0.0 0.0 2.8 1.9 2.3 3.2 5.3 0.0 0.0 1.4 2.2 3.8 7.5 3.2 20.0 0.0 4.9 0.0 8.3 6.0 0.0 3.7 3.7
MiniCPM-V (7B) 0.0 2.6 9.1 2.4 0.0 3.9 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 6.7 11.3 2.2 1.6 18.0 0.0 4.9 0.0 3.6 0.0 3.1 3.7 3.0
Qwen2-VL-7B 0.0 0.0 5.5 0.0 2.9 2.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 2.2 1.3 2.2 0.0 12.0 2.0 2.4 0.0 6.0 2.0 0.0 0.0 1.6
SeeClick (7B) 0.0 0.0 0.0 2.4 0.0 0.0 1.4 1.9 0.0 0.0 0.0 2.9 0.0 5.7 0.0 0.0 0.0 0.0 8.0 2.0 0.0 0.0 2.4 2.0 1.5 1.2 1.1
Qwen2-VL-72B 0.0 1.3 1.8 0.0 0.0 2.0 1.4 0.0 0.0 0.0 0.0 0.0 1.3 1.4 2.2 0.0 0.0 0.0 8.0 4.1 0.0 0.0 2.4 0.0 0.0 1.2 1.0
GPT-4o 0.0 1.3 0.0 2.4 2.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.9 0.0 1.3 2.2 0.0 2.0 0.0 0.0 1.6 1.2 0.0 0.0 0.0 0.8
QwenVL-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Table 3: Performance breakdown of various models across application categories on ScreenSpot-Pro.

Model
Development Creative CAD Scientific Office OS Avg

Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg

OSAtlas-7B 33.1 1.4 17.7 28.8 2.8 17.9 12.2 4.7 10.3 37.5 7.3 24.4 33.9 5.7 27.4 27.1 4.5 16.8 28.1 4.0 18.9
UGround (7B) 26.6 2.1 14.7 27.3 2.8 17.0 14.2 1.6 11.1 31.9 2.7 19.3 31.6 11.3 27.0 17.8 0.0 9.7 25.0 2.8 16.5
AriaUI (3.9/25.3B MoE) 16.2 0.0 8.4 23.7 2.1 14.7 7.6 1.6 6.1 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 17.1 2.0 11.3
CogAgent (18B) 14.9 0.7 8.0 9.6 0.0 5.6 7.1 3.1 6.1 22.2 1.8 13.4 13.0 0.0 10.0 5.6 0.0 3.1 12.0 0.8 7.7
ShowUI (2B) 16.9 1.4 9.4 9.1 0.0 5.3 2.5 0.0 1.9 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 10.8 2.6 7.7
OSAtlas-4B 7.1 0.0 3.7 3.0 1.4 2.3 2.0 0.0 1.5 9.0 5.5 7.5 5.1 3.8 4.8 5.6 0.0 3.1 5.0 1.7 3.7
MiniCPM-V (7B) 7.1 0.0 3.7 2.0 0.0 1.2 4.1 1.6 3.4 8.3 0.0 4.7 2.8 3.8 3.0 3.7 1.1 2.6 4.5 0.7 3.0
Qwen2-VL-7B 2.6 0.0 1.3 1.5 0.0 0.9 0.5 0.0 0.4 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 2.5 0.2 1.6
SeeClick (7B) 0.6 0.0 0.3 1.0 0.0 0.6 2.5 0.0 1.9 3.5 0.0 2.0 1.1 0.0 0.9 2.8 0.0 1.5 1.8 0.0 1.1
GPT-4o 1.3 0.0 0.7 1.0 0.0 0.6 2.0 0.0 1.5 2.1 0.0 1.2 1.1 0.0 0.9 0.0 0.0 0.0 1.3 0.0 0.8
QwenVL-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1

in the image that are likely to contain the target. The prompts can
be found in Appendix B.

Candidate Area Scoring. The grounded bounding boxes are of-
ten noisy, so we apply box dilation to expand smaller ones into
larger candidate areas, reducing the risk of missing the target. Next,
candidates are ranked based on the sum of their scores across all
grounded boxes to determine the search order. Each candidate’s
score from a given box is computed using a predefined function
that considers the distance between their center points:

𝑠 =

{
exp

(
− (𝑥

′−0.5)2+(𝑦′−0.5)2
2𝜎2

)
, if point inside

0, otherwise
(1)

𝑥 ′ =
𝑥 − 𝑥1
𝑥2 − 𝑥1

, 𝑦′ =
𝑦 − 𝑦1
𝑦2 − 𝑦1

(2)

where (𝑥,𝑦) is the center of a voting box, and (𝑥1, 𝑦1, 𝑥2, 𝑦2)
represent the coordinates of the candidate area. 𝜎 is set to 0.3 in
all experiments. Candidates with more voting boxes closer to their
center receive higher scores, while those further away are assigned
progressively lower scores. This centrality-based approach emulates
human visual attention, andmitigates the scoring bias towards large
areas, which would otherwise slow down the search process.

The candidates are then subjected to non-maximum suppression
(NMS) to decrease overlapping regions. When two boxes overlap
greatly, the one with a higher score is kept.

Recursive Search. The algorithm recursively searches each can-
didate area by cropping out a sub-image, which is passed into the
recursive search function, 𝑉𝑖𝑠𝑢𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝐼 , 𝑠𝑢𝑏_𝑖𝑚𝑎𝑔𝑒, 𝑑 + 1). The
grounder model is invoked if the patch size is sufficiently small
(a hyperparameter set to 1280 pixels), and the planner verifies the
correctness of the bounding box. This recursive process continues
until the planner determines that the target has been found or until
the maximum search depth is reached.

5 Experiments
With ScreenSpot-Pro, we rigorously evaluate the correctnesswhether
the model’s predictions fall into the annotated ground truth boxes.
For models inferencing boxes, we consider the center point of the
generated box as the prediction.

End-to-endModels. We conduct the experiments on severalMLLMs
that support GUI Grounding: QwenVL-7B [1], Qwen2VL-7B [19],
MiniCPM-V-2.6 (8B) [27], CogAgent (18B) 1 [8], SeeClick (7B) [3],
UGround (7B) [5], OSAtlas-4B, OSAtlas-7B [22], ShowUI (2B) [13]
and Aria-UI (Mixture of Experts, 3.9B active) [24]. We handle the
varying formats of the location outputs to ensure a fair comparison
across models.

Baseline Methods. We compare the five baseline methods intro-
duced in Section 4 with OS-Atlas-7B [22] as the grounding model,
1THUDM/cogagent-chat-hf

8783

ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use MM ’25, October 27–31, 2025, Dublin, Ireland

and GPT-4o [18] as the planner if applicable. The number of itera-
tions in Iterative Splitting and Iterative Narrowing are both set to 3
following Nguyen [16] for a fair comparison.

5.1 Results of End-to-End Models
Models struggle on ScreenSpot-Pro, even the specialist models. The

full results of the GUI grounding models are presented in Table
2. OS-Atlas-7B leads the performance with an accuracy of 18.9%,
closely followed by UGround and AriaUI. None of the other models
achieved an accuracy above 10%. Notably, GPT-4o scored only 0.8%,
highlighting its limitations for the GUI grounding task despite its
strong understanding capability.

Icons targets are more difficult to ground than texts. Table 3 demon-
strates that the benchmarked models struggle significantly in iden-
tifying and grounding icon elements in the GUI, a consistent finding
with Cheng et al. [3]. The challenge is exacerbated by the profes-
sional applications, as they may feature an extensive number of
icons as a result of the complex functionality, e.g. Origin’s toolbar
(see Figure 3 in the Appendix). Moreover, the icons carry unique
meanings within professional contexts that are rarely encountered
in the web data, on which many models are primarily trained.

5.2 Results of Baseline Methods
ReGround achieves the best result among planner-free methods.

The results of baseline models are listed in Figure 4. Interestingly,
the simplest baseline ReGround achieved the highest performance
with OS-Atlas-7B, reaching 40.2%. Iterative Narrowing slightly
outperformed Iterative Focusing, likely due to its superior image-
splitting strategy handling targets near the center of the screenshot
without cutting them off.

ScreenSeekeR achieves SOTA on ScreenSpot-Pro. Table 5 demon-
strates the superior performance of ScreenSeekeR on ScreenSpot-
Pro. While the base model, OS-Atlas-7B, achieves only 18.9% ac-
curacy, and explaining instructions with GPT-4o results in only a
1.9% improvement, our method significantly boosts its accuracy to
an impressive 48.1% without any additional training. These results
highlight that the primary bottleneck lies in the grounding model.
With a proper design, models with strong screenshot understanding
capabilities, even if not specifically optimized for grounding, can
still be leveraged to significantly improve grounding performance.

ScreenSeekeR generates intuitive and explainable search traces. As
shown in the case study in Figure 1, given the task of “delete file or
folder”, the plain model completely fails and ReGround was misled
into grounding the file tab in the background VSCode window, as its
initial grounding attempt was too far away from the ground truth.
In contrast, ScreenSeekeR not only successfully grounds the target
UI but also generates a natural search trajectory. It first focuses on
the open Explorer window, then searches the top action bar before
identifying the target, closely aligning with a human user’s thought
process. This feature is not only effective but also makes it possible
to interpret the model, as it provides a clear and understandable
explanation of the search process.

5.3 Ablation studies

ReGroundOS Atlas

ScreenSeekeR

The <element>delete button</element>

is most likely to be found in the

<area>File Explorer window</area>.

The <element>delete button</element>

is most likely to be found in the

<area>top action bar</area>, next to

the <neighbor>New button</neighbor.

The <element>delete button</element>

is most likely to be found in the

<area>toolbar at the top of the file

explorer window</area>.

Figure 5: A case study comparing ScreenSeekeR (bottom)
with the plain model prediction (top left) and ReGround (top
right). The task is “delete file or folder”. Grounding results
are marked in the same color as the text references under
the screenshots. Final results are drawn in red boxes.

Ablations on the crop size of ReGround. Table 6 examines the
impact of crop size in ReGround on the two top-performing models,
OS-Atlas-7B and UGround (7B). Both models exhibit peak perfor-
mance within specific resolution ranges, with performance declin-
ing as image sizes deviate. OS-Atlas-7B achieves its best score with
1024×1024 crops, while UGround performs optimally with 768×768
crops. This behavior is expected: when images are too small, crucial
context is lost [16], whereas images that are too large exceed the
model’s processing capacity.

Ablation on key designs of ScreenSeekeR. To evaluate the im-
pact of each key component, we conducted ablation studies on
ScreenSeekeR. In the bottom part of Table 4, we show that re-
moving subsequent searches and retaining only the first planner
decision led to the most significant performance drop, reducing
accuracy to 41.9%. When neighbor inference is ablated, limiting the
planner to only identifying the target’s location, performance de-
creased slightly by 1.7%. Additionally, substituting the patch scoring
method with a simple majority vote strategy resulted in a perfor-
mance drop to 46.8%. These results underscore the crucial role each
design element plays in the effectiveness of ScreenSeekeR.

Ablation of planner and grounder of ScreenSeekeR. We study the
impact of different planner and grounder models in ScreenSeekR in
Table 5. Given the absence of planner models specifically trained
for GUI visual search tasks, we include Qwen2-VL-72B [19] as a
representative comparison. Our analysis reveals that Qwen2-VL-
72B struggles with interpreting GUI screenshots, often producing
ambiguous references such as “other tools” and “icons,” which lack
actionable specificity. Despite this limitation, it still outperforms
the two standalone grounder models by 8.0% and 7.1%, respectively.
Incorporating GPT-4o as the planner significantly enhances perfor-
mance, with OS-Atlas demonstrating a larger margin over UGround
in this configuration.

5.4 Error Analysis
We randomly sampled a total of 78 examples, including three exam-
ples from each application, and evaluated them using three baseline

8784

MM ’25, October 27–31, 2025, Dublin, Ireland Kaixin Li et al.

Table 4: Comparison of methods on ScreenSpot-Pro with OS-Atlas-7B.

Model Dev Creative CAD Scientific Office OS Overall
Text Icon Avg

OS-Atlas-7B 17.7 17.9 10.3 24.4 27.4 16.8 28.1 4.0 18.9

GPT-4o Instruction 19.7 19.6 10.7 32.3 27.4 15.3 30.2 5.6 20.8

Iterative Splitting 33.1 27.3 23.8 25.2 43.9 36.2 43.5 10.8 31.0
Iterative Narrowing 34.4 27.3 20.3 29.5 40.9 43.9 43.5 13.1 31.9
ReGround 37.5 38.1 33.3 37.8 59.1 37.8 55.7 15.1 40.2

w/o Recursive Search 40.8 35.5 33.3 44.5 58.7 43.4 51.8 16.2 41.9
w/o Neighbor Inference 46.8 41.6 33.3 44.9 63.0 53.6 62.4 20.4 46.4
w/o Patch Scoring 48.5 42.8 34.1 47.6 61.3 50.0 63.3 20.2 46.8
ScreenSeekeR 49.8 +32.1 41.9 +24.0 37.9 +27.6 47.2 +22.8 64.3 +36.9 52.0 +35.2 64.1 +36.0 22.4 +18.4 48.1 +29.2

Table 5: Performance comparison of different planner mod-
els and grounding models in the ScreenSeekeR algorithm on
ScreenSpot-Pro.

Planner Grounder Text Icon Avg

Qwen2-VL-72B UGround (7B) 33.7 9.6 24.5
OS-Atlas-7B 35.7 8.3 26.0

GPT-4o UGround (7B) 56.2 15.2 40.5
OS-Atlas-7B 64.1 22.4 48.1

Table 6: Ablation of crop size in ReGround.

Crop Size 512 × 512 768 × 768 1024 × 1024 1280 × 1280

OS-Atlas-7B 25.1 34.2 40.2 40.1
UGround (7B) 27.0 28.8 28.2 26.3

Misled by Icon Misled by Text Near Miss Random Guess Not Found
Error Type

0

2

4

6

8

10

12

14

16

Er
ro

r T
yp

e

15

13

15

17

0

17

7

11
10

0

12

5

9

7

3

Error Type Distribution
Plain Model
ReGround
ScreenSeekeR

Figure 6: Error distributionwith OS-Atlas-7B as the grounder.

methods. For a more in-depth analysis, we categorized the errors
into four distinct groups. The first two categories, Misled by Icon
andMisled by Text, capture instances in which the model incorrectly
selects an element other than the intended target, either because
the visual icon or the associated text is confusing or misleading.
The third category, Near Miss, includes predictions that are very

close to the correct target. Specifically, it includes predictions that
fall within three times the size of the ground-truth bounding box,
but still fail to match the exact target precisely. The fourth category,
Random Guess, accounts for outputs that appear largely irrelevant,
showing little or no connection to the intended target. Finally, the
Not Found category describes cases in which the model completely
fails to locate the target, terminating the search without producing
a valid prediction.

The results, shown in Figure 6, underscore the need for more
precise grounder models, as all methods exhibited frequent near
misses. Enhancing GUI understanding and instruction-following
capabilities is also critical. Many errors stem from misinterpreting
visually or semantically similar elements. For example, the model
selects the word “tool” instead of the specific tool mentioned in
the instruction. A significant portion of mistakes also arose from
incorrect icon recognition, suggesting limited domain knowledge
in current MLLMs. Among the methods, ScreenSeekR achieved
the lowest error rates across all categories except for “Not Found”,
where the planner fails to locate the target and terminates the search.
In contrast, the other two methods always produce a prediction, but
this often results in a higher number of “Random Guess” errors.

6 Conclusion
The growing capabilities of MLLMs present new opportunities for
GUI grounding, yet existing models struggle with the unique chal-
lenges of high-resolution interfaces. We introduced ScreenSpot-Pro,
a benchmark that rigorously evaluates GUI grounding in complex
professional environments. Our evaluation showed that current
models perform poorly, highlighting the need for better strategies.
Inspired by our findings, we proposed several visual search base-
line models, including ScreenSeekeR, an agentic framework that
enhances accuracy by refining the search space, achieving a substan-
tial performance boost without additional training. ScreenSpot-Pro
has the potential to shift the research focus from grounding simplis-
tic tasks to more realistic scenarios where agents must interpret and
interact with an entire screen, powering development of practical
GUI agent tools.

8785

ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use MM ’25, October 27–31, 2025, Dublin, Ireland

References
[1] Jinze Bai, Shuai Bai, Shusheng Yang, ShijieWang, Sinan Tan, PengWang, Junyang

Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-vl: A versatile vision-language
model for understanding, localization, text reading, and beyond. arXiv preprint
arXiv:2308.12966 1, 2 (2023), 3.

[2] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan
Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu
Qiao, and Jifeng Dai. 2023. InternVL: Scaling up Vision Foundation Models and
Aligning for Generic Visual-Linguistic Tasks. arXiv preprint arXiv:2312.14238
(2023).

[3] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang,
and Zhiyong Wu. 2024. SeeClick: Harnessing GUI Grounding for Advanced
Visual GUI Agents. arXiv:2401.10935 [cs.HC] https://arxiv.org/abs/2401.10935

[4] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang,
Huan Sun, and Yu Su. 2024. Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems 36 (2024).

[5] Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng
Shu, Huan Sun, and Yu Su. 2024. Navigating the Digital World as Humans Do:
Universal Visual Grounding for GUI Agents. arXiv:2410.05243 [cs.AI] https:
//arxiv.org/abs/2410.05243

[6] Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo,
Douglas Eck, and Aleksandra Faust. 2024. A Real-World WebAgent with Plan-
ning, Long Context Understanding, and Program Synthesis. In ICLR. https:
//openreview.net/forum?id=9JQtrumvg8

[7] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang,
Zhenzhong Lan, and Dong Yu. 2024. WebVoyager: Building an End-to-End Web
Agent with Large Multimodal Models. arXiv preprint arXiv:2401.13919 (2024).

[8] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji,
Yan Wang, Zihan Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming
Ding, and Jie Tang. 2023. CogAgent: A Visual Language Model for GUI Agents.
arXiv:2312.08914 [cs.CV] https://arxiv.org/abs/2312.08914

[9] Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita
Chhaparia, Alistair Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and
Timothy Lillicrap. 2022. A data-driven approach for learning to control computers.
In International Conference on Machine Learning. PMLR, 9466–9482.

[10] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu
Huang, Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried.
2024. VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web
Tasks. ACL (2024).

[11] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen
Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. 2024. Llava-onevision: Easy
visual task transfer. arXiv preprint arXiv:2408.03326 (2024).

[12] Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and
YunchaoWei. 2024. Appagent v2: Advanced agent for flexible mobile interactions.
arXiv preprint arXiv:2408.11824 (2024).

[13] Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen
Bai, Weixian Lei, Lijuan Wang, and Mike Zheng Shou. 2024. ShowUI: One Vision-
Language-Action Model for GUI Visual Agent. arXiv preprint arXiv:2411.17465
(2024).

[14] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024. Improved baselines
with visual instruction tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 26296–26306.

[15] Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li,
and Xiang Yue. 2024. VisualWebBench: How Far Have Multimodal LLMs Evolved
in Web Page Understanding and Grounding? arXiv preprint arXiv:2404.05955
(2024).

[16] Anthony Nguyen. 2024. Improved GUI Grounding via Iterative Narrowing. arXiv
preprint arXiv:2411.13591 (2024).

[17] OpenAI. 2023. GPT-4V(ision) System Card. https://cdn.openai.com/papers/
GPTV_System_Card.pdf. Accessed: 2024-02-03.

[18] OpenAI. 2024. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/. Accessed:
2024-11-01.

[19] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin
Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhancing
vision-language model’s perception of the world at any resolution. arXiv preprint
arXiv:2409.12191 (2024).

[20] Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, and
Dacheng Tao. 2024. Divide, conquer and combine: A training-free framework for
high-resolution image perception in multimodal large language models. arXiv
preprint arXiv:2408.15556 (2024).

[21] Penghao Wu and Saining Xie. 2023. V*: Guided Visual Search as a Core Mecha-
nism in Multimodal LLMs. arXiv preprint arXiv:2312.14135 (2023).

[22] Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia,
Kanzhi Cheng, Zichen Ding, Liheng Chen, Paul Pu Liang, et al. 2024. OS-
ATLAS: A Foundation Action Model for Generalist GUI Agents. arXiv preprint
arXiv:2410.23218 (2024).

[23] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng
Cao, Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng
Xu, Shuyan Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu.
2024. OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in
Real Computer Environments. arXiv:2404.07972 [cs.AI]

[24] Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and
Junnan Li. 2024. Aria-UI: Visual Grounding for GUI Instructions. arXiv preprint
arXiv:2412.16256 (2024).

[25] Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. 2023. Appagent: Multimodal agents as smartphone users. arXiv preprint
arXiv:2312.13771 (2023).

[26] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. 2022. Webshop:
Towards scalable real-world web interaction with grounded language agents.
Advances in Neural Information Processing Systems 35 (2022), 20744–20757.

[27] Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi
Cai, Haoyu Li, Weilin Zhao, Zhihui He, et al. 2024. MiniCPM-V: A GPT-4V Level
MLLM on Your Phone. arXiv preprint arXiv:2408.01800 (2024).

[28] Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin,
Jeffrey Nichols, Yinfei Yang, and Zhe Gan. 2024. Ferret-UI: Grounded Mobile
UI Understanding with Multimodal LLMs. arXiv:2404.05719 [cs.CV] https:
//arxiv.org/abs/2404.05719

[29] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma,
Yu Kang, Qingwei Lin, Saravan Rajmohan, et al. 2024. Ufo: A ui-focused agent
for windows os interaction. arXiv preprint arXiv:2402.07939 (2024).

[30] Meng Ziyang, Yu Dai, Zezheng Gong, Shaoxiong Guo, Minglong Tang, and
Tongquan Wei. 2024. VGA: Vision GUI Assistant - Minimizing Hallucinations
through Image-Centric Fine-Tuning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (Eds.). Association for Computational Linguistics, Miami, Florida, USA,
1261–1279. https://aclanthology.org/2024.findings-emnlp.68

8786

https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2410.05243
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.05719
https://arxiv.org/abs/2404.05719
https://arxiv.org/abs/2404.05719
https://aclanthology.org/2024.findings-emnlp.68

	Abstract
	1 Introduction
	2 Related Works
	2.1 GUI Grounding
	2.2 Processing High Resolution Images

	3 ScreenSpot-Pro: Benchmarking GUI Grounding for Professional High-Resolution Computer Use
	3.1 Scope of Data Collection
	3.2 Collection Method and Criteria
	3.3 Quality Control
	3.4 ScreenSpot-Pro Statistics

	4 Baseline Methods
	4.1 GPT Instruction
	4.2 Planner-Free Visual Search Methods
	4.3 ScreenSeekeR: An Agentic Grounding Framework

	5 Experiments
	5.1 Results of End-to-End Models
	5.2 Results of Baseline Methods
	5.3 Ablation studies
	5.4 Error Analysis

	6 Conclusion
	References

