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1. Analyze the faults of two models.  
2. Perform fault-driven question evolution.

Around 7 Samples per Hour
Expensive and Time-Cost

(Chatbot Arena Style)

A travel enthusiast with a passion for culinary experiences
and cultural exploration, particularly drawn to the food and
landmarks, making this video especially engaging for their
interest in Singapore's cuisine and tourism.

Human Annotation User Simulation (Role Play)

As someone passionate about travel and local cuisines, can
you provide an overview of the couple's journey through
Singapore, highlighting the must-try local dishes they
sampled and the famous landmarks they visited?

 User Simulation (Question Asking) 

GPT-4o Gemini-1.5-Pro

Aria

Chat automatically with two
anonymous models and vote
for the better response.

Rule

Qwen2-VL-72B LLaVA-Video-72B

Model Pool

Model A Response Model B Response

A is better. B is better. Tie.

Automatic Judging
GPT-4o-mini Gemini-1.5-Flash

Qwen2-VL-7B LLaVA-Video-7B

LLaVA-OneVision-72B LLaVA-OneVision-7B

VideoAutoArena ELO Rating

Fault-Driven Evolution

Peer Battle

Figure 1. An overview of our VideoAutoArena, where we leverage LMMs for user simulation to automatically evaluate LMMs in video
analysis, offering an efficient alternative to costly and time-consuming human annotations, distinct from platforms like LMSYS Chatbot
Arena [14] and WildVision Arena [45]. In this figure, we showcase 4 sampled frames from a Singapore travel vlog video.

Abstract

Large multimodal models (LMMs) with advanced video
analysis capabilities have recently garnered significant at-
tention. However, most evaluations rely on traditional
methods like multiple-choice question answering in bench-
marks such as VideoMME and LongVideoBench, which are
prone to lack the depth needed to capture the complex de-
mands of real-world users. To address this limitation—and
due to the prohibitive cost and slow pace of human anno-
tation for video tasks—we introduce VideoAutoArena, an
arena-style benchmark inspired by LMSYS Chatbot Arena’s
framework, designed to automatically assess LMMs’ video
analysis abilities. VideoAutoArena utilizes user simula-
tion to generate open-ended, adaptive questions that rig-
orously assess model performance in video understanding.
The benchmark features an automated, scalable evaluation

♢Project Page: https://videoautoarena.github.io/

framework, incorporating a modified ELO Rating System
for fair and continuous comparisons across multiple LMMs.
To validate our automated judging system, we construct a
“gold standard” using a carefully curated subset of human
annotations, demonstrating that our arena strongly aligns
with human judgment while maintaining scalability. Addi-
tionally, we introduce a fault-driven evolution strategy, pro-
gressively increasing question complexity to push models
toward handling more challenging video analysis scenar-
ios. Experimental results demonstrate that VideoAutoArena
effectively differentiates among state-of-the-art LMMs, pro-
viding insights into model strengths and areas for improve-
ment. To further streamline our evaluation, we introduce
VideoAutoBench as an auxiliary benchmark, where human
annotators label winners in a subset of VideoAutoArena
battles. We use GPT-4o as a judge to compare responses
against these human-validated answers. Together, VideoAu-
toArena and VideoAutoBench offer a cost-effective, and
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scalable framework for evaluating LMMs in user-centric
video analysis.

1. Introduction
Recently, large multimodal models (LMMs) with advanced
video understanding capabilities, such as GPT-4o [26],
Gemini-1.5-Pro [2, 51], Aria [31], Qwen2-VL [57], and
LLaVa-Video [30, 73], have garnered significant attention
within the multimodal community. These models repre-
sent a major shift in the capabilities of artificial intelligence
by extending beyond traditional image-based LMMs [1, 16,
32, 40] to encompass complex video inputs. Unlike their
predecessors, which primarily focused on static visual data,
these models are designed to handle dynamic, time-variant
data, making them well-suited for processing lengthy and
intricate video sequences. By leveraging language-based
instructions from users, these LMMs can efficiently con-
duct a range of video analysis tasks, from understanding
fine-grained scene details [31] to comprehending overarch-
ing narrative structures [26].

To better evaluate the video analysis capabilities of these
models, recent works have introduced several widely used
benchmarks, including MVBench [35], VideoMME [20],
and LongVideoBench [59]. These benchmarks typically
share a common feature: they pre-define core video analysis
skills, such as object recognition in a single frame and ac-
tion reasoning across a sequence of frames. They adopt an
ability-centric approach, often using multiple-choice ques-
tions to assess performance. While these benchmarks have
significantly contributed to the development of LMMs, they
place limited emphasis on the types of questions real users
might ask when seeking assistance with video analysis. In
contrast, practical video analysis scenarios are far more
complex and diverse in their requirements [14].

To address this gap, we can draw inspiration from
the evaluation methods used for large language models
(LLMs) [5, 17, 54, 55]. Traditional language benchmarks,
such as MMLU [24], IFEval [76], HumanEval [10], and
GSM8k [15], also suffer from limited alignment with real
user interactions [14, 72, 74]. To mitigate this issue, plat-
forms like LMSYS Chatbot Arena [14] have been intro-
duced, providing an open, crowdsourced platform for eval-
uating LLMs based on human preferences. Chatbot Arena
employs a pairwise comparison approach, collecting feed-
back from a diverse set of users, ensuring that evaluation
questions are generated by real users. This approach over-
comes many of the challenges posed by previous bench-
marks and has become one of the most widely adopted
methods for evaluating LLMs.

One straightforward solution is to adapt this idea directly
to LMMs for video analysis. Indeed, recent work, such as
WildVision Arena [45], has attempted to do so. However, an

analysis of the WildVision Video Arena leaderboard reveals
certain challenges with this approach. The video arena has
received only 256 votes across 11 models, with each model
participating in an average of just 23 battles since its release
approximately 6 months ago. This limited number of battles
can likely be attributed to the increased complexity involved
in formulating questions for video-based tasks. Unlike lan-
guage and image data, where questions can be quickly gen-
erated or verified within seconds, videos are typically longer
and contain richer, more complex contexts. Annotators
must spend significantly more time watching and under-
standing the video content before formulating high-quality
questions. In our preliminary attempts, we hired annotators
to complete this task, and the time cost proved significant,
with a maximum output of only 7 samples annotated per
hour. This time investment hinders the scalability of gener-
ating high-quality questions for LMMs, a crucial factor for
ensuring the effectiveness of arena-style evaluations.

To address the limitations of existing video analysis
benchmarks, we propose VideoAutoArena, a fully auto-
mated, arena-style evaluation method for LMMs. Unlike
human-driven platforms, VideoAutoArena leverages LMM
agents for user simulation and preference selection, elimi-
nating the need for costly human annotators and enabling
scalable, efficient evaluations. The framework also inte-
grates fault-driven hard prompt evolution, which generates
progressively challenging questions based on model per-
formance, ensuring more rigorous testing. By simulating
real-world user behavior, VideoAutoArena bridges the gap
between ability-centric evaluations and practical applica-
tion demands. Our human preference experiments show
that 84.20% of the time, questions in VideoAutoArena
better mimic real-world user question styles compared to
VideoMME and LongVideoBench. Additionally, 87.29%
of the time, our automatic judging aligns with human pref-
erence selection.

Experiments on 11 well-known proprietary and open-
source LMMs reveal that open-source models still lag be-
hind the SOTA closed-source model GPT-4o in video anal-
ysis, with a significant performance gap (-385.7). This gap
is notably larger than those observed in traditional multiple-
choice question-answering benchmarks. The disparity be-
comes even more pronounced as video length increases or
the difficulty of the questions rises. Furthermore, when fo-
cusing on user-background relevance and helpfulness, the
performance gap widens further. These findings highlight
how our benchmark offers a user-centric perspective, pro-
viding valuable insights for the development of LMMs.

To complement VideoAutoArena, we also introduce
VideoAutoBench, a streamlined benchmark designed for
faster, more accessible evaluation of LMMs in video anal-

The numbers are recorded on Nov. 14, 2024 at https://
huggingface.co/spaces/WildVision/vision-arena.
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Benchmark Venue Long Video Included User-Centric Scalable Open-Ended Automated

MVBench [35] CVPR 24 ✗ ✗ ✗ ✗ ✓
MLVU [77] Arxiv 24 ✓ ✗ ✗ ✗ ✓
LVBench [58] Arxiv 24 ✓ ✗ ✗ ✗ ✓
VideoMME [20] Arxiv 24 ✓ ✗ ✗ ✗ ✓
LongVideoBench [59] NeurIPS 24 ✓ ✗ ✗ ✗ ✓
WildVision Video Arena [45] NeurIPS 24 ? ✓ ✗ ✓ ✗

VideoAutoArena (Ours) CVPR 25 ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of recent popular benchmarks for video analysis. WildVision video data are not yet publicly available.

ysis. VideoAutoBench leverages a curated subset of bat-
tles from VideoAutoArena, where human annotators have
selected the winning model responses. Using GPT-4o for
automatic judging, VideoAutoBench compares model an-
swers against these human-selected and rejected responses,
providing an efficient, cost-effective assessment method.
Our results show that the rankings from VideoAutoBench
align closely with those from VideoAutoArena, with a sig-
nificant gap between SOTA closed-source and open-source
LMMs, underscoring the benchmark’s challenge.

2. Related Work

LMMs with advanced video understanding capabilities
have garnered significant research attention. For the
closed-source models, GPT-4o [26] and Google’s Gemini-
1.5 [2, 51] demonstrate SOTA video analysis performance.
Meanwhile, the open-source community has made notable
strides [7, 9, 12, 13, 19, 21, 25, 27, 29, 34, 38, 39, 41, 42, 44,
46, 48, 52, 63–67, 69, 71]. Notably, the LLaVa series [40]
has been updated to the LLaVa-Video [73] and LLaVa-
OneVision models [30], along with the release of all train-
ing data. The Qwen-VL model [3] has also been upgraded
to the Qwen2-VL version [57], and the first open-source
multimodal mixture-of-experts (MoE) model, Aria [31], has
recently been introduced. These contributions have signif-
icantly narrowed the gap between closed-source and open-
source models in video understanding. To accelerate the
development of LMMs in video analysis, the establishment
of more comprehensive benchmarks is essential.

In the early phase, researchers primarily relied on bench-
marks featuring short videos [11, 22, 23, 50], such as
MSVD-QA [62], MSRVTT-QA [62], NExT-QA [60], and
MVBench [35]. However, these benchmarks have limi-
tations due to their short video durations, averaging less
than 50 seconds. This brevity restricts their ability to
comprehensively evaluate the temporal understanding ca-
pabilities of LMMs, thereby hindering further advance-
ments in LMMs development. To address these limitations,
benchmarks like ActivityNet-QA [68] and EgoSchema [49]
have extended video durations to approximately 180 sec-
onds on average. More recently, research has intro-
duced even more comprehensive benchmarks [43, 58, 70].

For instance, MovieChat-1K [53] assesses LMMs us-
ing movie videos with an average duration of 500 sec-
onds, while LongVideoBench [59] focuses on long-context
interleaved evaluation with an average duration of 473
seconds. Additionally, MLVU [77] presents a LMMs’
ability-centric benchmark, featuring substantial extensions
of video lengths. Furthermore, VideoMME [20] introduces
a highly comprehensive benchmark that includes short,
medium, and long videos, further enhancing the evaluation
of LMMs’ temporal understanding abilities. As discussed
in the introduction, most current benchmarks are limited
by multiple-choice questions that diverge from real user in-
teraction. To address this, we introduce VideoAutoArena,
which evaluates LMMs through open-ended, simulated hu-
man questions. Table 1 highlights the differences between
our benchmark and other recent video-based benchmarks.

3. VideoAutoArena

3.1. Overview

As illustrated in Figure 1, the VideoAutoArena pipeline
consists of four core components: user simulation, peer bat-
tles, automatic judging, and fault-driven evolution. Initially,
an agent reviews a video to identify user personas likely
to be interested in the content. Adopting one of these per-
sonas, the agent formulates a relevant question about the
video. Two randomly selected models then engage in peer
battles to respond to the question. A judging agent de-
termines which model provides the better response, while
an analysis agent evaluates the responses, performs fault
analysis, and generates progressively challenging questions
to further assess the models’ capabilities. To demonstrate
the effectiveness of our VideoAutoArena, we use 2,881
videos from LongVideoBench, with an average duration of
479 seconds. These videos are categorized into four du-
ration ranges—(8s, 15s], (15s, 60s], (180s, 600s], (900s,
3600s]—and 10 categories: Movie, Life Vlogs, Geography,
History, News Programs, Art, STEM, Computer Science,
Cooking Recipes, and Travel Guides. The data distribution
are provided in Figure 2. Our benchmark is not restricted to
specific videos, and new videos can be easily incorporated
into the evaluation pipeline.
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Figure 2. Video statistics by category and duration.

3.2. User Simulation
Ideally, real user queries would offer the direct evaluation
of LMM performance in real life video analysis. How-
ever, given the complex contextual demands of video con-
tent, human annotation is expensive and time-cost. To
address this, VideoAutoArena adopts user simulation with
role-play, with SOTA LMMs acting as agents to gener-
ate realistic, user-centeric questions and preferences, en-
abling a more practical evaluation. In language-based roly-
play [6, 8, 28, 33], there is typically no need to consider ex-
ternal context, such as videos, allowing role-play to freely
generate diverse questions. In video analysis, however,
questions are constrained by the video content. To address
this, we introduce a novel role-play method called video
content-constrained persona generation. Given a video,
agents first identify the types of users likely to be inter-
ested in it, defining three user types: (1) users with back-
grounds highly relevant to the video; (2) users with mod-
erately relevant backgrounds; and (3) users with unrelated
backgrounds who encounter the video by chance. This
relevance-based categorization aims to emulate real users
with varied backgrounds seeking assistance from LMMs
for video analysis. Once user types are established, agents
adopt these personas to generate persona-specific questions
for detailed video analysis. This user-centric process sets
our evaluation method apart from previous ability-centric
benchmarks. The prompts used are provided in the Ap-
pendix A.1.

3.3. Peer Battles and Fault-Driven Evolution
Once the role-play agent generates a question for a spe-
cific video, we initiate peer battles between two anonymous
models, following the Chatbot Arena style. Two models are
randomly chosen from the model pool, presented with the
same video and question, and asked to generate responses.
Our goal is to fairly compare the quality of these responses
to determine which LMM provides a better answer.

Similar to the concept of Hard Prompts in Chatbot
Arena [36], incorporating more challenging questions can
further push the boundaries of evaluating the abilities of
current LMMs in video analysis. Thus, we aim to create a
harder question set for evaluation purposes. Unlike Chatbot
Arena, which can directly source hard prompts from mil-
lions of real user queries, our approach is limited to the

prompts generated by a user simulator. To derive harder
questions, we draw inspiration from the famous instruction
synthesis method, Evol-Instruct [47, 61], which evolves ex-
isting questions into more complex ones using predefined
heuristic strategies. However, because Evol-Instruct gener-
ates questions based on a similar prompt structure for each
evolution, it encounters limitations in question diversity. To
address this, we introduce a fault-driven question evolu-
tion strategy that iteratively increases question complexity.
Rather than relying on isolated prompts, each new evolu-
tion generates questions based on the results of the previ-
ous model battle. This approach creates a more adaptive
and progressively challenging environment for the models,
pushing them to respond to increasingly complex questions.

In this framework, a response analysis agent initially re-
views responses from two competing models, identifying
specific faults and performance weaknesses. Based on this
assessment, role-play agents then generate tailored ques-
tions aimed at probing these weaknesses, making the ques-
tion synthesis process progressively more fault-driven. Af-
ter a new question is generated, a complexity evaluation
agent assesses its difficulty. If the new question receives
a higher overall complexity score than the previous one,
it is retained for subsequent model battles. This iterative
approach establishes a rigorous testing environment, chal-
lenging models with increasingly complex and contextually
nuanced tasks, thus providing a deeper evaluation of each
model’s video understanding capabilities. The prompts
used are provided in the Appendix A.2.

3.4. Judging and Ranking

A key aspect of arena-style evaluation is determining the
winner in each model comparison. In Chatbot Arena, hu-
man annotators directly express their preferences, but in
VideoAutoArena, human annotation is costly and difficult
to scale due to the time-intensive nature of video analysis.
To address this, we aim to automate the judgment process.
Drawing inspiration from automated judging benchmarks
like Arena-Auto-Hard [36] and MT-Bench [75], we first de-
fine our judging standards as follows:
1. Instruction Following: The response should closely ad-

here to the user’s instructions, ensuring it directly ad-
dresses the specified task.

2. Accuracy: The response must utilize information from
the video accurately, avoiding fabrication or misquota-
tion. It should maintain factual correctness, avoid hal-
lucinations, and demonstrate contextual coherence with
precise terminology and knowledge.

3. Relevance: The response should consider the user’s
background information and needs, providing a compre-
hensive, detailed answer that addresses the question di-
rectly without straying off-topic. Responses should be
thorough, offering multiple perspectives where relevant.
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A person who is an art educator and researcher
specializing in Bauhaus studies. They are actively
involved in art workshops and exhibitions, making
this video directly relevant to their field of work
and study.

related

less
related

not
related

Before the subtitle says 'certain kinds of errors are what
give,' what first appears when a girl in a deep red dress
kneeling on the left and a girl in a black dress standing
on the right are seen together?

What inspires the collaborative project between Douglas
Repetto and Mark Allen, and how does it relate to the
Bauhaus Lab?

 LongVideoBench Question Style

A person who is an engineering student with a
keen interest in design and collaborative projects.
Although their primary focus is not art, they are
curious about the intersection of technology and
creative expression, which this video exemplifies.

How does the video illustrate the relationship
between Bauhaus principles and contemporary art
practices in the context of hands-on workshops,
and what role do the participants play in this
interaction?

This video covers a MoMA workshop and performance,
"Walking Tables and Wrestling Foals." It features participants
assembling wooden structures and interviews with Douglas
Repetto and Mark Allen, who discuss the project’s inspiration.
The event includes interactive elements and live music, with
both audience and participants actively involved.

 Comparing with Popular Long Video Benchmarks 

A person who works in finance and has no formal
background in art or design. However, they enjoy
attending cultural events and are open to
exploring new interests. This video piques their
curiosity about innovative artistic concepts and
experiences.

How did the collaboration between the engineers
and the creative team at MoMA facilitate the
construction of the mechanical structures and what
was the primary challenge they faced in combining
engineering with artistic expression?

As someone who usually works in finance and
is not deeply familiar with art, I'm curious about how
this collaboration at MoMA connects concepts from
the Bauhaus movement with modern artistic
practices. Could you explain how this video
showcases that relationship?

Video Caption

User Simulation (Role Play)  User Simulation (Question Asking) 

 VideoMME Question Style

Multi-Choice QA

Multi-Choice QA
Our

Open
Ended

QA

Figure 3. Examples of synthesized personas with three levels of relevance and corresponding synthesized questions. We also compare the
style of our questions with those in popular long-video benchmarks, including LongVideoBench and VideoMME.

4. Helpfulness: The response should provide valuable in-
formation to aid the user in understanding or solving
their issue, avoiding irrelevant or vague content.

Based on these standards, we adopt the LMM-as-a-Judge
paradigm [36, 45, 75] to automatically determine the better
response between two models. The prompts used are pro-
vided in the Appendix A.3.

After obtaining the automatic judging results, we utilize
the ELO Rating System [18] to establish a dynamic evalu-
ation platform that ranks LMMs through statistical model-
ing based on direct pairwise comparisons. Here, we briefly
explain the Online ELO Rating and statistical estimation
methods. The Online ELO Rating system calculates the
probability that model i will win against model j using their
respective ratings, Ri and Rj , where i, j ∈ N . For each
comparison, we define a binary outcome Yij , where Yij = 1
if model i wins and Yij = 0 otherwise. The probability is
computed as follows:

P (Yij = 1) =
1

1 + 10(Rj−Ri)/α
,

where α = 400 is the scaling factor in the ELO compu-
tation. After each comparison, player ratings are updated
by:

R′
i = Ri +K × (S(i, j)− P (Yij = 1)),

where S(i, j) represents the actual outcome (1 for a win,
0.5 for a tie, and 0 for a loss). Higher-rated players gain
fewer points if they win and lose more if defeated, while
lower-rated players experience the reverse. Since ELO up-
dates are sensitive to comparison order, we employ the
Bradley–Terry model [4] for stable statistical estimation, as
in Chatbot Arena.

The Bradley–Terry model refines ELO ratings through a
logistic regression model using maximum likelihood esti-

mation. For N models with pairwise comparisons, where
Wij is the count of times model i wins over j, the log-
likelihood function for all comparisons is:

R =
∑

i,j∈N,i̸=j

WijYijP (Yij = 1),

where R = {R1, . . . , RN} represents each model’s rat-
ing. Since this approach doesn’t accommodate ties directly,
we split all tie votes, counting half as wins for model i
(Yij = 1) and the other half as wins for model j (Yij = 0).
This ensures balanced ranking and fair statistical estimation
across all model comparisons.

3.5. Experiments
Setup. To demonstrate the effectiveness of VideoAu-
toArena, we evaluate 11 SOTA LMMs, including GPT-
4o/mini, Gemini-1.5-Pro/Flash, Aria, Qwen2-VL-72B/7B,
LLaVa-Video-72B/7B, and LLaVa-OneVision-72B/7B, all
of which have shown strong performance on the
VideoMME. For response generation, each video was uni-
formly sampled to provide 64 frames as input. Since most
of these LMMs do not support audio, the audio track was
converted to subtitles and combined with the question as in-
put. For automatic judging, each video was sampled to pro-
vide 128 frames and combined with subtitles. Additional
experimental details are provided in the Appendix B.

User Simulation and Diversity. In our experiments, we
generated an average of three personas per video across 2.9k
videos, resulting in about 8.6k unique personas. As shown
in Figure 3, we showcases examples of three personas with
varying levels of relevance to a given video. Each per-
sona includes motivations or reasons for their interest in

Claude-Series LMMs were excluded from our experiments due to lim-
ited support for long video input (maximum 20 frames).
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(b) Humans preference ranking.

Figure 4. Our user simulation offers diverse personas and more
effectively mirrors real-world users’ question styles.

the video, enabling more persona-specific question genera-
tion. Moreover, in Figure 4a, we compare the distribution of
our synthesized personas with those from PersonaHub [6],
which includes diverse personas automatically curated from
web. To map the distribution, we used one of the SOTA sen-
tence embedding models, gte-large-en-v1.5 [37], to
encode each persona description into vectors, then applied
t-SNE [56] for dimensionality reduction. The results show
that our synthesized personas achieve diversity compara-
ble to that in PersonaHub. Notably, our personas are con-
strained by video content, while PersonaHub personas are
synthesized without such constraints, highlighting that our
personas effectively simulate a range of realistic user back-
grounds. Additional examples of synthesized personas are
provided in Appendix C.1.

After generating personas, our role-play agent adopts
each persona to ask relevant questions about the video con-
tent, seeking help from AI assistants. In our experiments,
we synthesized one question per unique personas for 2.9k
videos. To assess how well our questions mimic real-world
user queries, we randomly selected 120 questions and com-
pared them with question styles from LongVideoBench and
VideoMME. Since our videos are from LongVideoBench,
we used the same set for consistency. However, since
VideoMME uses different videos, we applied a style trans-
fer method, adapting VideoMME questions to synthesize
similar-style questions based on our benchmark’s videos.
This allowed a fair comparison across the three benchmarks
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Figure 5. Our fault-driven evolution strategy generates increas-
ingly challenging questions for video analysis.

on identical video samples. To evaluate the naturalness
of each benchmark’s question style, we conducted a blind
ranking task, asking three skilled annotators to rank which
questions best mimic real-world user queries, with Rank 1
as the best. Annotation guidelines are detailed in the Ap-
pendix D.1. As shown in Figure 4b, for 84.2% of the com-
parisons, VideoAutoArena’s questions ranked first in mim-
icking real-world user question styles. This result highlights
how our benchmark brings a unique perspective to evaluat-
ing LMMs for video analysis. Figure 3 further provides
example questions to illustrate the style of our questions in
mimicking real-world users. In Appendix C.2, we also in-
clude more synthesized question examples.

Question Evolution. To analyze the hard prompts gen-
erated by our fault-driven evolution, we perform an auto-
mated complexity assessment of the synthesized questions.
Using the SOTA LMM, GPT-4o, we evaluate the difficulty
level of these questions on a 1–5 scale before and after evo-
lution. We further break down the difficulty into 5 cat-
egories—instruction following, accuracy, relevance, help-
fulness and overall—based on our automatic judging stan-
dards. As shown in Figure 5, the evolved questions consis-
tently achieve higher difficulty scores across all categories,
demonstrating the effectiveness of our evolution strategy.
The analysis prompts are included in Appendix A.4.

Automatic Judging. To establish a “gold standard” for
evaluating the accuracy of automatic judging, framed as a 3-
choice task (A, B, or Tie), we created a benchmark guided
by our judging criteria. Since no public human annotations
are available for this, we engaged annotators to carefully
evaluate a subset of battles. Annotation guidelines are de-
tailed in the Appendix D.2. Given the labor-intensive nature
of this work—yielding about 7 annotations per hour—we
randomly selected around 300 battles across various video
lengths and models for annotation. Figure 6 presents the ac-
curacy comparison among SOTA LMMs and voting meth-
ods for automated judging. GPT-4o demonstrated the high-
est alignment with human preferences, achieving an 87.29%
agreement. Notably, employing a voting approach with
multiple LMMs (Top2 to Top4) did not result in better
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Models Size ELO Win Rates (8 s, 15 s] (15 s, 60 s] (180 s, 600 s] (900 s, 3600 s]

Proprietary Models
GPT-4o - 1505.69 89.19 1447.86 1449.59 1575.34 1552.23
GPT-4o-mini - 1323.25 76.90 1293.27 1343.28 1327.75 1349.29
Gemini-1.5-Pro - 1187.01 65.11 1247.65 1171.82 1263.58 1291.64
Gemini-1.5-Flash - 1149.52 62.07 1081.58 1131.27 1140.07 1260.36

Open-Source Models
Aria 8×3.5B 1119.99 59.54 1147.45 1273.77 1110.67 1111.40
Qwen2-VL 72B 886.52 35.61 985.46 928.23 829.65 826.56
Qwen2-VL 7B 875.56 34.90 969.28 859.33 850.30 829.21
LLaVA-Video 72B 836.62 30.25 796.90 850.12 827.88 782.55
LLaVA-Video 7B 765.61 23.52 672.35 736.14 759.15 721.78
LLaVA-OneVision 72B 763.71 23.11 731.50 710.64 759.29 741.80
LLaVA-OneVision 7B 586.52 9.86 626.70 545.82 556.31 533.18

Table 2. Our VideoAutoArena Leaderboard. We show the overall ELO ratings and win rates within four different video lengths.
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Figure 6. Evaluate the accuracy of various judging methods us-
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Figure 7. ELO ratings for models competing on questions before
and after applying fault-aware evolution.

agreement. As a result, we selected GPT-4o as the pri-
mary judge for determining the winning responses due to
its strong alignment with human judgments.

Leaderboard. As shown in Table 2, we present the ELO
ratings and win rates across 4 video length categories for 11
SOTA LMMs in video analysis. Our evaluation involves a
total of 12,479 head-to-head battles, with each model par-
ticipating in roughly 1,600 battles, and each model pair
competing approximately 150 times—significantly surpass-
ing the scale of WildVision Video Arena and demonstrat-
ing the scalability of our method. In terms of ELO ratings,

the leading open-source LMM, Aria, lags behind the top
proprietary LMM, GPT-4o, by a notable margin (-385.7),
underscoring the benchmark’s strong discriminative power.
Unlike in VideoMME, where the score gap among the top
six models is less than 10%. For shorter videos (under 60
seconds), the gap between the top proprietary and open-
source LMMs narrows, with Aria even surpassing the well-
known Gemini-1.5-Pro on videos between 15 and 60 sec-
onds. However, as video length increases, performance
gaps widen considerably; for instance, Qwen2-VL sees a
drop of over 100 ELO points, while Gemini-1.5-Flash gains
around 180 ELO points when comparing results on short
versus long videos. Notably, Aria demonstrates stable and
strong performance across varying video lengths.

In addition, Figure 7 presents the ELO ratings for mod-
els competing on questions before and after applying fault-
aware evolution. When challenged with more difficult
prompts, all open-source LMMs except Aria exhibit lower
scores, whereas all proprietary LMMs, apart from GPT-4o,
show improved scores. Figure 8 further details the perfor-
mance of various LMMs across different judging standards.
Notably, the gap between proprietary and open-source
LMMs is most evident in the helpfulness and relevance
tracks, compared to the instruction-following and accuracy
tracks. This gap suggests that many open-source LMMs are
primarily optimized for traditional, ability-focused bench-
marks like VideoMME, which overlook user-centered as-
pects such as contextual relevance and information help-
fulness. By focusing on a more comprehensive evaluation,
our VideoAutoArena bridges this gap, providing deeper in-
sights into the limitations and future development potential
of LMMs. In the Appendix C.3, we also include examples
of different LMMs’ responses as case studies to better un-
derstand the weaknesses of these models.

Battle Example. As shown in Figure 9, we present an
example of a battle between Aria and LLaVa-Video-72B.
Both models follow the question and provide accurate infor-
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In the video, the host discusses the significance of the quetzal in relation to the Guatemalan flag. Could
you explain its importance and what other elements are symbolically represented on the flag as
described in the video? Question

The quetzal bird is a significant symbol on the Guatemalan flag, representing the country's national
animal. The flag features a vertical tricolor of blue and white, with the blue stripes symbolizing the
oceans surrounding Guatemala, and the white stripe representing peace and purity. The Guatemalan
coat of arms is centered on the white stripe, which includes a parchment scroll inscribed with
"LIBERTAD 15 DE SEPTIEMBRE DE 1821," commemorating the country's independence from Spain
on September 15, 1821. Additionally, the coat of arms is surrounded by a wreath of laurel branches,
symbolizing victory, and crossed swords and rifles, representing honor and Guatemala's readiness to
defend itself.

The quetzal, a national symbol of Guatemala, is featured on the flag to represent freedom and
independence. Other elements on the flag include a laurel wreath symbolizing victory, rifles and swords
indicating the country's defense and honor, and a scroll with the date "15 de septiembre de 1821"
marking Guatemala's independence from Spain.

Aria Response

LLaVA-Video-72B Response

Figure 9. Example of a battle between Aria and LLaVa-Video-
72B. Red highlights key content, while green highlights important
details mentioned only by Aria.

mation about the Guatemalan flag. However, only Aria in-
cludes additional details, such as the flag’s vertical tricolor,
while LLaVa-Video’s response lacks sufficient depth on
these aspects. Consequently, Aria’s response is more help-
ful for users seeking to understand the flag’s symbolism.
The automated judge also selects Aria as the winner. Tra-
ditional multiple-choice QA benchmarks, like VideoMME,
cannot reveal such open-ended limitations in LMMs. More
examples are included in the Appendix C.3.

4. VideoAutoBench

While VideoAutoArena offers a novel approach to eval-
uating LMMs in video analysis, it is less immedi-
ately user-friendly than multiple-choice benchmarks like
VideoMME and LongVideoBench, which provide straight-
forward scores based on model responses. In contrast,
VideoAutoArena requires the target model to engage in
comparative battles with other models to generate re-
sults. To streamline this evaluation process, we introduce
VideoAutoBench, which combines the user-centric assess-
ment strengths of VideoAutoArena with the simplicity and
speed of traditional benchmarks. In our automated judging
experiments, we included human annotators to label win-
ners for a subset of battles, using these questions and non-

Models vs. Sel. vs. Rej. Avg.

GPT-4o 70.98 94.12 82.55
GPT-4o-mini 49.80 92.16 70.98
Gemini-1.5-Pro 28.24 82.74 55.49
Gemini-1.5-Flash 27.25 81.96 54.61
Aria 19.80 76.86 48.33
Qwen2-VL-72B 13.92 64.71 39.32
Qwen2-VL-7B 11.96 60.00 35.98
LLaVA-Video-72B 7.45 56.08 31.77
LLaVA-OneVision-72B 4.12 52.16 28.14
LLaVA-Video-7B 5.29 46.67 25.98
LLaVA-OneVision-7B 3.53 30.98 17.26

Table 3. LMMs compete against human selected or rejected an-
swers in our VideoAutoBench.

tied responses as reference answers. In VideoAutoBench,
we employ GPT-4o as the judging model to evaluate each
model’s responses against the human-selected or rejected
answers, with GPT-4o voting based on the same standards
used in VideoAutoArena. When competing with human-
selected answers, a model earns 1 point for a win, 0.5 for a
tie, and 0 for a loss, with the final score being the average
across all battles. When competing with human-rejected
answers, only a win earns 1 point. Table 3 presents the per-
formance of different LMMs, showing the similar rank as
in VideoAutoArena.

5. Conclusion

We introduce VideoAutoArena, an automated arena-style
benchmark that addresses the limitations of traditional
multiple-choice video QA benchmarks. Using user sim-
ulation, peer battles, automated judging, and fault-driven
evolution, VideoAutoArena enables a scalable, user-centric
evaluation for complex video analysis tasks. Alongside, we
present VideoAutoBench, a streamlined evaluation compar-
ing model responses to human-labeled answers. Experi-
ments on 11 SOTA LMMs reveal a notable performance gap
between closed and open-source models, particularly for
long videos, challenging questions, and scenarios involving
user background relevance and response helpfulness.
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de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
Chung, Ian D. Kivlichan, Ian O’Connell, Ian Osband, Ian
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