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A B S T R A C T

Low-resource named entity recognition (NER) aims to identify entity mentions when training
data is scarce. Recent approaches resort to distant data with manual dictionaries for improve-
ment, but such dictionaries are not always available for the target domain and have limited
coverage of entities, which may introduce noise. In this paper, we propose a novel Collaborative
Teaching (CoTea) framework for low-resource NER with a few supporting labeled examples,
which can automatically augment training data and reduce label noise. Specifically, CoTea
utilizes the entities in the supporting labeled examples to retrieve entity-related unlabeled
data heuristically and then generates accurate distant labels with a novel mining-refining
iterative mechanism. For optimizing distant labels, the mechanism mines potential entities
from non-entity tokens with a recognition teacher and then refines entity labels with another
prompt-based discrimination teacher in a divide-and-conquer manner. Experimental results on
two benchmark datasets demonstrate that CoTea outperforms state-of-the-art baselines in low-
resource settings and achieves 85% and 65% performance levels of the best high-resource
baseline methods by merely utilizing about 2% of labeled data.

. Introduction

Named entity recognition (NER) aims to identify entity mentions in sentences and assign them semantic categories such as
person (PER), organization (ORG), location (LOC), etc. It is one of the fundamental tasks preceding various natural language

rocessing (NLP) applications, e.g., relation extraction (Sui, Zeng, Chen, Liu, & Zhao, 2023), question answering (Lan et al., 2022),
nowledge graph construction (Zhu et al., 2022), etc. Existing supervised approaches for NER achieved superior performances in
igh-resource settings, i.e., training on a large amount of labeled data (Li, Sun, Han & Li, 2022). However, obtaining large-scale
nnotated data in a new or low-resource domain, e.g., the disease domain, is difficult and expensive for the NER task. Thus, these
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Fig. 1. t-SNE plot of entity embeddings from 100 sentences randomly selected from distant data-augmented CoNLL-2003. The entity labels are provided using
dictionaries and ‘‘Other Entities’’ denotes the entities that are not matched.

methods may suffer from data scarcity and not easily identify entities in low-resource settings (Asghari, Sierra-Sosa, & Elmaghraby,
2022; Liu, Jiang, Hu, Shi & Fung, 2021; Liu, Xu et al., 2021). Therefore, the research on low-resource NER is challenging but in
demand.

In recent years, low-resource NER has attracted increasing attention when only a small set of labeled data is available (Hedderich,
Lange, Adel, Strötgen, & Klakow, 2021; Zevallos et al., 2022). There are three research branches for low-resource NER, including
prototype-based methods, knowledge-transferring methods, and data-augmented methods. Prototype-based methods simply classify
named entities based on their similarities with a few labeled samples (Ma, Ballesteros et al., 2022; Ma, Jiang, Wu, Zhao & and
Lin, 2022), but they are not well-generalized on recognizing unseen low-resource entities. Knowledge-transferring methods attempt
to utilize external knowledge from pre-trained language models (PLM) (Cui, Wu, Liu, Yang, & Zhang, 2021; Ma et al., 2023) or
existing high-resource labeled datasets (Chen, Aguilar, Neves, & Solorio, 2021; Chen, Liu, Lin, Han, & Sun, 2022; Li, Hu et al.,
2022; Nozza, Manchanda, Fersini, Palmonari, & Messina, 2021). However, utilizing data with different distributions and label
sets for model training may introduce noise and knowledge mismatch between domains, e.g., ‘‘America’’ is annotated as GPE in
OntoNotes (Weischedel et al., 2013) but LOC in CoNLL-2003 (Sang & De Meulder, 2003). Data-augmented methods propose to
augment the limited labeled data by searching related samples from a wide range of resources, where dictionaries are applied for
data annotation via distant supervision (Cheng, Zhang, Bu, Wu, & Song, 2023; Liang et al., 2020; Meng et al., 2021; Zhang, Yu
et al., 2021). However, they may suffer from dictionary quality and thereby overfit to noise.

As shown in Fig. 1, dictionaries can be used to distantly map ‘‘China’’ and ‘‘South Africa’’ to the location (LOC) category, but
there are still many entities that cannot be matched, e.g., ‘‘South Africa Revenue Service’’ and ‘‘Ministry of Foreign Affairs of the People’s
Republic of China’’ due to the limited coverage of the dictionary. Thus, we argue that the entity labels of distant data significantly rely
on the quality of dictionaries. Although a larger dictionary can be a remedy for strengthening entity coverage and improving distant
labels, it is prone to be labor-intensive and domain-specific (Lin et al., 2019; Rijhwani, Zhou, Neubig, & Carbonell, 2020). Besides,
‘‘Ministry of Foreign Affairs of the People’s Republic of China’’ (ORG) may also be partially labeled with error types, i.e., ‘‘People’s
Republic of China’’ (LOC), because unseen entities were usually missed regarding the dictionary. This introduces label noise such as
incomplete labels or incorrect types and thus affects model training. Therefore, to alleviate this issue, we are motivated to utilize
the different knowledge from PLMs for refining distant labels, which could be helpful for low-resource NER.

To this end, we propose a novel collaborative teaching method (CoTea) for low-resource NER, enabling automatic data
augmentation and label noise toleration. Specifically, CoTea utilizes the supporting entities as the query to retrieve relevant data from
the knowledge graph and matches all entities in the distant sentences with low-resource and distant entities for initializing distant
labels. Afterward, since there exists noise during retrieving distantly labeled data, a novel mining-refining iterative mechanism based
on BERT (Kenton & Toutanova, 2019) and BART (Cui et al., 2021) is introduced to leverage extra knowledge from PLMs and generate
refined distant labels. Unlike prior work relying on a well-prepared dictionary for distant labels, this mechanism uses a divide-and-
conquer strategy to mine and check entities from the entity- and non-entity parts, respectively, without any dictionary. Extensive
experimental results demonstrate that our method can effectively augment data and enhance the performance of recognition models
for low-resource NER.

The main contributions can be summarized as follows:

• A novel collaborative teaching (CoTea) framework is proposed for low-resource NER, which enables automatic data augmen-
tation and collaborative teacher models for enhancing model training. This contributes to alleviating data scarcity and distant
label noise.

• In this framework, we introduce a novel mining-refining iterative mechanism, where prior knowledge from different pre-trained
language models is integrated in a divide-and-conquer manner for label refinement, without manual gazetteers or dictionaries.

• Extensive validations on real-world benchmark datasets compared with the state-of-the-art methods demonstrate that our
CoTea sets a new state-of-the-art performance in low-resource settings.
2
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The rest of this paper is organized as follows: Related work is first summarized in Section 2. We then highlight the research
mplications and novelty of this work in Section 3 and formulate the research problem of this paper in Section 4. Next, our framework
s detailed in Section 5. After that, the experimental setting and results are given in Section 6. Finally, Section 6 summarizes the
onclusion and future work.

. Related work

In this section, we provide a review of the research work that is related to our study. Existing methods on NER could be roughly
ategorized into two groups, i.e., high-resource NER and low-resource NER (Hedderich et al., 2021).

.1. High-resource NER

There are large-scale, high-quality labeled data in high-resource domains, contributing to model training and thereby significantly
nhancing the performance of NER. For example, BiLSTM-CRF combined bidirectional LSTMs with conditional random fields (CRF)
or word-level and character-level features (Huang, Xu, & Yu, 2015; Lample, Ballesteros, Subramanian, Kawakami, & Dyer, 2016),
SEmb used contextual string embeddings for sequence labeling (Akbik, Blythe, & Vollgraf, 2018), CrossNER extracted information
y a joint cross-document BiLSTM and multi-task learning (Wang, Fan, & Liu, 2021), BERT-Linear/CRF became a popular paradigm
ith the pre-trained language model (PLM) for encoding (Kenton & Toutanova, 2019), ACE automated the process of finding better

oncatenations of different embeddings (Wang, Jiang et al., 2021), LinkBERT pre-trained a language model by leveraging links
etween documents (Yasunaga, Leskovec, & Liang, 2022), MINER improved out-of-vocabulary NER from an information theoretic
erspective (Wang et al., 2022). In addition, channel attention (Xu et al., 2023), planarized sentence representation (Geng, Chen,
uang, Qin, & Zheng, 2023), and interactive networks (Tang, Zhang, Wu, He, & Song, 2022) inspired us for further improvement.
lthough traditional fully supervised methods have achieved promising performances, they significantly relied on large-scale labeled
ata for training (Li, Sun et al., 2022). This significantly impairs the effectiveness of these methods in low-resource domains without
ufficient labeled data.

.2. Low-resource NER

Recently, low-resource NER has attracted increasing attention when labeled data is scarce, including different theoretical
aradigms, e.g., few-shot (Fritzler, Logacheva, & Kretov, 2019; Huang et al., 2021) or zero-shot learning (Pourpanah et al., 2022).
hey could be roughly classified into three groups as follows: (1) Prototype-based methods categorize unseen entities regarding their
istances with only a small portion of labeled examples, e.g., MAML decomposed meta-learning for NER (Ma, Jiang et al., 2022),
nd metric-based NER encoded label to help determine entity categories (Ma, Ballesteros et al., 2022). Their strength lies in their
bility to generalize from a few examples, making them effective in low-resource scenarios. However, their limitation is that their
erformance heavily depends on the quality and representativeness of the few labeled examples used. The performance may suffer if
hese examples do not represent the overall data distribution. (2) Knowledge-transferring methods adapt extra knowledge from PLMs
r high-resource domains/languages to that of the low-resource, e.g., BART-NER utilized prompt-based learning for NER (Cui et al.,
021), demonstration-based NER integrated prompt into the input with task demonstrations (Lee et al., 2022), cross-lingual NER
sed teacher–student distillation training to align high-source languages and low-source languages (Li, Hu et al., 2022), cross-domain
ugmentation methods transformed the data representation from high-resource domains into the low-resource domains (Chen et al.,
021, 2022; Nozza et al., 2021). Their strength is that they can leverage existing resources and knowledge to improve performance.
owever, the limitation is that the effectiveness of the transfer might be compromised if there is a significant discrepancy between

he source and target domains or languages. (3) Data-augmented methods utilize noisy unlabeled data to augment limited labeled
ata for better performance, e.g., BOND exploited distant supervision and self-training based on BERT (Liang et al., 2020), RoSTER
ombined noise-robust learning with augmented self-training for NER (Meng et al., 2021), NEEDLE continually pre-trained on large
nlabeled open-domain data and target-domain data based on manual dictionaries (Jiang, Zhang, Cao, Yin, & Zhao, 2021), LADA
dopted local additivity based data augmentation to create virtual samples (Chen, Wang, Tian, Yang, & Yang, 2020), and dictionaries
re also used to enhance NER (Lin et al., 2019; Rijhwani et al., 2020). Their strength is their ability to leverage large amounts of
nlabeled data or existing resources like dictionaries. However, they face the challenge of label noise introduced by the unlabeled
ata or the limitations in entity coverage by the dictionaries. Despite their effectiveness, these methods share a common limitation
n entity coverage and seldom strive to devise a universal approach for low-resource NER, which may limit their applicability.

.3. Semi-supervised learning

Semi-supervised Learning is a learning paradigm that leverages a large number of unlabeled data for improving the learning
erformance given a small number of labeled samples (Yang, Song, King, & Xu, 2022). For example, deep generative methods
dopt GAN-based frameworks for learning the distribution of real data from unlabeled samples (Kang et al., 2023; Li, Yao et al.,
022; Yu et al., 2021), or VAE-based frameworks for combining deep autoencoders with generative latent-variable models (Cao,
uo, & Klabjan, 2021; Fang et al., 2022), respectively. Consistency regularization methods usually use a teacher–student structure to
roduce a more accurate model instead of directly using output predictions (Tian, Zhang, Sun, Yin, & Dong, 2022; Ye & Bors, 2021).
3

raph-based methods perform label inference on a constructed similarity graph to propagate the label information from the labeled
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Fig. 2. An overview of CoTea. In the phase (a), distant data is obtained with initial labels. In the phase (b), the recognition teacher (RT) and discrimination
teacher (DT) cooperate to refine these distant labels. RT is initialized by warm-up training on low-resource labeled data and updated by consecutive recognition
student (RS) models periodically.

samples to the unlabeled ones by incorporating both topological and feature knowledge (Niu, Anitescu, & Chen, 2023; Wan et al.,
2021). Pseudo-labeling methods improve the performance of the whole framework based on the disagreement of views or multiple
networks, and the emerging hybrid methods reach state-of-the- art performances in most vision benchmarks (Li, Liu, & Song, 2022;
Wang, Kihara, Luo & Qi, 2021; Zhang, Wang et al., 2021). Thus, this study explores a novel hybrid method named the collaborative
teacher–student (CoTea) framework for consistency regularization and pseudo-labeled self-training, effectively reducing label noise
and augmenting training data for better performance in low-resource settings.

Implication and novelty. Finally, we would like to highlight the research implications and emphasize its unique aspects
compared to prior works regarding low-resource NER. (1) From a theoretical point of view, this study proposes a novel collaborative
teaching framework, which contributes to alleviating data scarcity and distant label noise for low-resource NER. From a practical
point of view, our proposed method enables automatic data augmentation without dictionaries and can be easily applied to other
research tasks in low-resource settings, which can improve task performance and save annotation costs.

(2) Different from the previous studies, we not only focus on alleviating data scarcity, but we also hope to retrieve distantly
labeled data from online resources heuristically (Section 4.1). In addition, we introduce a novel mining-refining iterative mechanism
containing two teacher models, where a recognition teacher (Section 4.2) mines potential entities from non-entity tokens and
another prompt-based discrimination teacher (Section 4.3) refines entity labels, respectively. Finally, we train neural NER networks
using collaborative self-training that form a consensus prediction of distant labels on the ensemble output of these two teachers
(Section 4.4) and joint optimization (Section 4.5), which can automatically augment training data and reduce label noise, without
manual dictionaries.

3. Problem definition

Formally, a sentence is represented as 𝐗 = {𝑥1,… , 𝑥𝑡,… , 𝑥
|𝑋|

}, where | ⋅ | denotes the sequence length, each word 𝑥𝑡 is associated
with one entity label 𝑦𝑡 ∈ 𝐘 = {𝑦1,… , 𝑦𝑡,… , 𝑦

|𝐗|} based on BIO schema (Li et al., 2012). Specifically, 𝑦𝑡 could be 𝐵 − 𝑇 , 𝐼 − 𝑇 , and
𝑂, indicating the beginning (𝐵−), inside (𝐼−), and outside (𝑂) of the pre-defined entity type 𝑇 (e.g., PER and LOC), respectively.
Thus, an entity is a span 𝑥𝑖∶𝑗 = {𝑥𝑖,… , 𝑥𝑗}(1 ≤ 𝑖 ≤ 𝑗 ≤ |𝐗|), which is determined by 𝐵 − 𝑇 or (𝐵 − 𝑇 and 𝐼 − 𝑇 ) in 𝑦𝑖∶𝑗 = {𝑦𝑖,… , 𝑦𝑗}.
The high-resource NER can be formulated as a sequence labeling problem, i.e., 𝑓 (𝐗) → �̂�.

However, for low-resource NER in this paper, only a few labeled data 𝐿 = {(𝐗𝐿,𝐘𝐿)} is available, so we further incorporate
distant data 𝐷 = {𝐗𝐷} for model training, where the superscripts 𝐿 and 𝐷 denote labeled data and distant data, respectively. In
this study, we use the output of the teacher model as the pseudo labels of distant data, i.e., 𝐘𝐷, and denote the predicts of the
student model as �̂�𝐷, we generate and refine such distant labels as an auxiliary means of low-resource NER. Thus, we formulate it
as 𝑓 (𝐗𝐿,𝐗𝐷) → (�̂�𝐿, �̂�𝐷). Ultimately, our goal is to minimize the objective functions 𝑅𝑇 ,𝐷𝑇 , and 𝑇𝑆 , which can be written as:

 = min(𝐗𝐿,𝐘𝐿, �̂�𝐿) (1)
4
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𝐷𝑇 = min(𝐘𝐿, �̂�𝐿) (2)

𝑇𝑆 = min(𝐘𝐷, �̂�𝐷) (3)

This work provides an effective paradigm to alleviate data scarcity and reduce label noise, thereby improving the NER
erformance in low-resource settings. We will describe the details in the following sections.

. Collaborative teaching framework

Our core idea is to utilize a few labeled examples to obtain a set of distantly labeled data and train NER models on such augmented
ata using two collaborative teachers in a divide-and-conquer manner, where one teacher is used to mine entities from non-entity
arts, and the other teacher checks the predicted categories of entities separately. In the following subsections, we will introduce
he details of our proposed framework, including (1) Retrieve distantly labeled data; and (2) Collaborative self-training, as shown
n Fig. 2. After that, we will detail the optimization process.

.1. Retrieve distantly labeled data

Neural NER methods achieved promising performances relying on large-scale labeled data, but manually annotating such training
ata is expensive and time-consuming. Fortunately, there are many external online resources, e.g., knowledge bases (Dong et al.,
014; Hoffart, Suchanek, Berberich, & Weikum, 2013; Speer, Havasi, et al., 2012), describing named entities. This provides a
romising and cheap remedy to automate this process for low-resource NER.

Instead of constructing a large-scale dictionary for each domain (Lin et al., 2019; Rijhwani et al., 2020), our method heuristically
earches highly related named entities with their descriptions from Google knowledge graph1, which can significantly augment

training data for deep learning, as shown in Fig. 2(a). Specifically, given a set of pre-defined entity types (K-way) and some labeled
examples for each type (N-shot), we use each entity in a supporting labeled example as a query to search the knowledge graph for
collecting more related entities and their description sentences via its API, and then leverage the entity type with string matching
methods to obtain initial distant labels (Noise will be considered later). Thus, the retrieved description with initial labels can be
used for self-training and thereby foster student model training. Taking the sentence in Table 6 as an example, ‘‘Jean-François van
Boxmeer ’’ and its description sentences are obtained from the knowledge of ‘‘Van Boxmeer ’’ (PER) and then ‘‘Jean-François van
Boxmeer ’’ is distantly labeled as PER.

Text encoding. Given an input sentence 𝐗 = {𝑥1,… , 𝑥𝑡,… , 𝑥
|X|}, we utilize pre-trained language models, e.g., BERT (Kenton

Toutanova, 2019) and BART (Lewis et al., 2020), to obtain the representations of the inputs to the following recognizer and
iscriminator models, respectively, i.e., 𝐡1∶|X| = Emb(𝑥1∶|X|).

.2. Recognition teacher and recognition student networks

As averaging model weights over training can obtain better model (Polyak & Juditsky, 1992), we adopt a collaborative teacher–
tudent model for NER, where the recognition teacher is used to mine entities from the mismatching part and periodically updated
y an average of consecutive student models to tolerate incorrect labels.

Specifically, for recognition teacher and student models in Fig. 2 (b, left), we use the conditional random field (CRF) on the BERT
epresentations for sequence labeling, e.g., B-PER, I-PER, O, etc. CRF can jointly consider neighboring generic labels for decoding
he best chain of labels (Ma & Hovy, 2016), e.g., 𝐼 − 𝑇 may follow after 𝐵 − 𝑇 rather than 𝑂 in the token label sequence of input

sentences based on BIO schema, e.g., 𝐵 − 𝑇 , 𝐼 − 𝑇 . For a given sentence 𝐗, we denote its representations as 𝐡 and its corresponding
predicted label sequence as �̂� = (�̂�1, �̂�2,… , �̂�

|X|). Thus, the output conditional probability of CRF is defined as follows:

𝑝(�̂�|𝐡;𝐖,𝐛) =
∏

|X|
𝑡=1 𝑓𝑡(�̂�𝑡−1, �̂�𝑡,𝐡)

∑

𝑦∈𝐘𝐱

∏

|X|
𝑡=1 𝑓𝑡(𝑦𝑡−1, 𝑦𝑡,𝐡)

(4)

here 𝑦 represents a label chosen from all possible labels 𝐘𝐱 and 𝑓𝑡(𝑦𝑡−1, 𝑦𝑡,𝐡) = 𝑒𝑥𝑝(𝐖𝑦𝑡−1 ,𝑦𝑡𝐡𝑡+𝐛𝑦𝑡−1 ,𝑦𝑡 ). Here 𝐖𝑦𝑡−1 ,𝑦𝑡 and 𝐛𝑦𝑡−1 ,𝑦𝑡 are
the weight parameters corresponding to the label pair (𝑦𝑡−1, 𝑦𝑡). Thus, the training objective of the CRF-based network is to minimize
the negative log-likelihood of the correct label sequence as follows:

𝑅𝑇 = −
∑

𝑡
log(𝑝(�̂�|𝐡;𝐖,𝐛)) (5)

For decoding, we minimize the loss to search for the best label sequence �̂�∗ as follows:

�̂�∗ = arg max
�̂�∈𝐘𝐱

𝑝(�̂�|𝐡;𝐖,𝐛) (6)

where �̂�𝐷
𝑡 denotes the predictions of recognition teacher on distant data, �̂�𝐷

𝑠 and �̂�𝐿
𝑠 denote the student predictions on distant

and low-resource data, respectively. This can be computed by the widely-used Viterbi algorithm (Viterbi, 1967). For warming up,

1 API: https://kgsearch.googleapis.com/v1/entities:search
5
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supervised learning is used to initialize the recognition teacher and its parameters will be periodically updated by trained students
during the following training.

Named entity mining. For given 𝐗𝐷, distantly labeling provides initial labels for distant sentences, but there are still many
unmatched entities, as shown in Fig. 1. For mining entities from non-entity tokens, we use the outputs of the latest recognition
teacher to update their labels as follows:

�̂�𝑡 =

{

�̂�𝐷𝑡 , if �̂�0𝑡 = O
�̂�0𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

where �̂�𝐷𝑡 ∈ �̂�𝐷
𝑡 denotes the output labels from the recognition teacher and �̂�0𝑡 denotes the original distant labels. In this way, the

recognition teacher will iteratively update the distant labels for finetuning the student model.

4.3. Discrimination teacher network

Distant labels generated from distantly labeling (Fig. 2(a)) or the outputs of the recognition teacher (Fig. 2 (b, left)) could
inevitably introduce label noise such as incomplete labels or incorrect types. To alleviate this issue, we further design a discrimination
teacher based on BART for label refinement. Specifically, for inputs with distant labels, a discrimination teacher network aims to
revise the mismatching errors by (1) mapping entities of incorrect types to correct categories or non-entities, and (2) converting
incomplete labels to non-entity labels for re-labeling.

To check dubious entities with the discrimination teacher, we need to create entity-centered templates following the formulation
of BART, which is superior in classifying such inputs as true or not. Specifically, given an input sequence pair (𝐗, �̂�), the target
sequence 𝐓𝑦𝑐 ,𝑥𝑖∶𝑗 = {𝑡1,… , 𝑡

|T|} is a template filled by a predicted entity 𝑥𝑖∶𝑗 and the natural language format of its entity category
, e.g., PER is mapped to ‘‘person’’. For example, ⟨𝐴𝑙𝑏𝑢𝑠𝐷𝑢𝑚𝑏𝑙𝑒𝑑𝑜𝑟𝑒⟩ is a ⟨𝑝𝑒𝑜𝑝𝑙𝑒⟩ entity. Denoting the one-hot label of entity type
as 𝑦𝑐 (𝑐 ∈ [0,… , 𝑘]). We also randomly select spans 𝑥𝑖∶𝑗 that contain non-entity labels or different categorical labels as negative

xamples for training, e.g., ⟨𝑡ℎ𝑒𝑂𝑟𝑑𝑒𝑟⟩ is not an entity. In this way, we create templates for entity 𝐓+
𝑦𝑐 ,𝑥𝑖∶𝑗

and non-entity 𝐓−
𝑦𝑐 ,𝑥𝑖∶𝑗

,
respectively, as follows:

𝐓+
𝑦𝑐 ,𝑥𝑖∶𝑗

∶
⟨

𝑥𝑖∶𝑗
⟩

is a ⟨𝑦𝑐⟩ entity.
𝐓−
𝑦𝑐 ,𝑥𝑖∶𝑗

∶
⟨

𝑥𝑖∶𝑗
⟩

is not an entity.
Different from span classification, we explicitly combine the original entity context with the prompt for sentence classification,

e.g., ‘‘⟨𝐴𝑙𝑏𝑢𝑠𝐷𝑢𝑚𝑏𝑙𝑒𝑑𝑜𝑟𝑒⟩ is a ⟨𝑝𝑒𝑜𝑝𝑙𝑒⟩ entity ’’ is appended to ‘‘Richard Harris originally played Albus Dumbledore’’, providing an
informative context for refining entity labels. Thus, the pre-trained model can easily discriminate different categories based on
the informative context. Specifically, given a sequence enhanced with a prompt, i.e., 𝑥′𝑖∶𝑗 = [𝑥𝑖∶𝑗 ;𝐓𝑦𝑐 ,𝑥𝑖∶𝑗 ], we feed 𝑥′𝑖∶𝑗 into BART
and obtain the output last hidden state as the final representations, i.e., 𝐡′

1∶|X′
|

. In this paper, we adopt the representation 𝐡′0 of
classification token ⟨𝑠⟩ of BART to represent the current sentence and then a linear layer is used to predict the probability of entity
classes as follows:

𝑝 = Softmax(𝐖′𝐡′0 + 𝐛′) (8)

where 𝐖′ and 𝐛′ are trainable parameters. The cross-entropy between the discrimination predictions and gold labels on 𝐿 is used
as the loss function:

𝐷𝑇 = 𝑦𝑐 log(𝑝) (9)

Thus, we also warmed up the discrimination teacher similar to the recognition teacher so as to check dubious entities for the
following distant label correction.

Inference for label refinement. We can obtain the categorical label �̂�′𝑖∶𝑗 via Max(𝑝). For each span 𝑥𝑖∶𝑗 in 𝐗𝐷, the discrimination
teacher network 𝑔𝜃𝑡 generates its refined distant labels as follows:

�̂�′𝑖∶𝑗 = 𝑔𝜃𝑡 (𝑥
′
𝑖∶𝑗 ) (10)

where 𝑥′𝑖∶𝑗 denotes the enhanced format of 𝑥𝑖∶𝑗 . In this way, the discrimination teacher can verify the labels of 𝑥′𝑖∶𝑗 and map it to
the correct labels �̂�′𝑖∶𝑗 . Thus, we can use these labels to update the entity part of labels �̂�𝑖∶𝑗 ∈ �̂�, finally obtaining �̂�′ for given 𝐗𝐷,
as follows:

�̂�𝑡 =

{

�̂�′𝑡 , if �̂�0𝑖∶𝑗 = NE & 𝑡 ∈ [𝑖 ∶ 𝑗]
�̂�0𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

where NE denotes the named entity, and ‘‘𝐵’’ and ‘‘𝐼 ’’ are not presented for convenience. Besides, the non-entity parts will be
explored by the recognition teacher.
6
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4.4. Collaborative self-training

To train neural NER networks using collaborative self-training, we propose to form a consensus prediction of distant labels
sing the ensemble output of these two teachers, which is expected to be a better predictor. Fig. 2(b) illustrates the overview
f collaborative self-training, where CoTea combines distant labels from named entity mining and label refinement using Eq. (7)
nd Eq. (11), respectively. In this case, CoTea finally reaches a superior balance and refines distant labels for student model training.

During training, to align the outputs of student and teacher models and mitigate the influence of noise, we leverage mean square
rror (MSE) as the loss function to measure the consistency of the refined outputs from the teachers and the student model as
ollows:

𝑇𝑆 = − 1
|X|

|X|
∑

𝑡
(�̂�𝑠𝑡 − �̂�𝑡)2 (12)

where �̂�𝑠𝑡 denotes the predicted label of the student model, �̂�𝑡 denotes the refined output of the teacher models.
Periodic update. We assume that a greater teacher produces a better student, which can sometimes be even more excellent

than the teacher. After the weights of the recognition student model have been updated with stochastic gradient descent for fixed
steps, the weights of the recognition teacher are updated as an exponential moving average (EMA) (Tarvainen & Valpola, 2017) of
the student and teacher weights with a ramp-up strategy for promotion as follows:

𝜃′𝑡 = 𝛽𝜃𝑡 + (1 − 𝛽)𝜃𝑠 (13)

where 𝛽 is a smoothing parameter. 𝜃𝑠 and 𝜃𝑡 denote the student and teacher weights, respectively. We use 𝛽 = exp(−5 ∗ (1 − 𝜖
𝜏 )

2) for
calculating 𝛽, where 𝜏 is a fixed temperature for ramping up and 𝜖 denotes the training step. This is because the student updates
uickly, and the teacher benefits from noisy student training in doing so. The update process is conducted periodically. Different
rom using 𝜃′𝑡 = 𝜃𝑠, periodic EMA for ensembling the student and teacher weights is more smooth and robust for making a better
eacher model.

.5. Model optimization

Overall, we relaxed the limit of using the unlabeled data that distributes similarly to test data for model training, e.g., removing
he labels of existing labeled datasets as unlabeled data (Laine & Aila, 2016; Tarvainen & Valpola, 2017). We argue that this process
otentially reduces the difficulty of low-resource NER, because unlabeled data with the same distribution is not always available
or the target domain. Actually, if we simply mix them up for supervised learning, the divergence or gap between unlabeled and
abeled data could impair the final performance.

Thus, we introduce a novel divide-and-conquer collaborative teaching framework for low-resource NER, aiming to train a better
ecognition model by reducing label noise and improving the teacher model. For warming up, we first train recognition teacher
nd discrimination teacher networks in supervised learning using Eq. (5) and Eq. (9), respectively. Then, we jointly optimize the
ecognition training loss 𝑅𝑇 and the teacher–student consistency loss 𝑇𝑆 by minimizing the overall loss 𝑎𝑙𝑙 as follows:

𝑎𝑙𝑙 = 𝑅𝑇 + 𝛼𝑇𝑆 (14)

where 𝛼 is the hyperparameter for trading off these two loss terms. In this way, CoTea can effectively train a better model for
low-resource NER, and cast new light on distantly supervised learning. Note that we pre-trained the discrimination teacher model
on target labeled data so as to check dubious entities for distant label correction, as shown in Algorithm 1. As shown in Fig. 2,
our proposed method includes two phases, i.e., (a) retrieving distantly labeled data and (b) collaborative self-training. In the phase
(a) iteration, we utilize the entities in the supporting labeled examples as a query to search the knowledge graph for collecting
more data and initialize them with distant labels. In the phase (b) iteration, we introduce a mining-refining mechanism based on a
divide-and-conquer strategy, where the recognition teacher mines entities from non-entity tokens and updates the non-entity part of
distant labels, while the discrimination teacher checks the corresponding entity labels and refines the entity part of distant labels.
Finally, we align their outputs and use collaborative self-training for joint optimization.

5. Experiments

In this section, We conduct comprehensive experiments to evaluate the effectiveness of our method compared with the
state-of-the-art baseline methods and provide fine-grained analysis for low-resource NER.

5.1. Datasets

We conduct experiments on two datasets, i.e., CoNLL-2003 (Sang & De Meulder, 2003) and NCBI-disease (Doğan, Leaman, & Lu,
2014), corresponding to news and disease domain, respectively. Since there is no public low-resource dataset, existing methods used
a small set of fully labeled data to fulfill the requirement of low-resource settings (Chen et al., 2022; Jiang et al., 2021; Meng et al.,
2021). Thus, we randomly sample N examples for each class (N -shot) from training and valid sets, respectively. We use N -shot
7

examples and a full test set for evaluation.
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The datasets are described as follows: (1) CoNLL-2003 (Sang & De Meulder, 2003) is an English news dataset collected from the
euters Corpus including 4 entity types, i.e., LOC, MISC, ORG, and PER labels. (2) NCBI-disease (Doğan et al., 2014) is a collection
f 793 PubMed abstracts with mentions and concepts annotated as DISEASE or not (one entity class). The dataset statistics are
resented in Table 2.

Algorithm 1: CoTea for Low-resource NER
Input: Low-resource training set 𝐿; Distant data 𝐗𝐷;
The maximal number of retrieved results 𝑀 ; The ramp-up temperature 𝜏.
Output: Predicted labels �̂�𝐿

𝑠 , �̂�
𝐷;

1 Initialize 𝑀 = 20, 𝜏 = 80;
2 for each example {(𝑥𝑡, 𝑦𝑡)}

|𝐿
|

𝑡=1 do
3 𝐗𝐷 ← 𝑀, Searching KG based on NEs in 𝐿;
4 �̂�𝐷 ← Distant labeling using NEs in 𝐿 and KG;
5 𝜃𝑡, 𝜙𝑡 ← 𝐿, Eq. (5) and Eq. (9); #warm up
6 for each epoch do
7 { Recognition teacher 𝜃𝑡 and student 𝜃𝑠 }
8 𝐡1∶|X| ← 𝑥1∶|X|, using BERT;
9 �̂�𝐿

𝑠 , �̂�
𝐷
𝑠 , �̂�

𝐷
𝑡 ← Eq. (6) ;

10 {Recognition teaching}
11 for �̂�0𝑡 ∈ �̂�𝐷, �̂�𝐷𝑡 ∈ �̂�𝐷

𝑡 do
12 �̂�𝑡 ← Eq. (7) #mining

13 �̂�𝐷 ← {�̂�𝑡}
|𝐗𝐷

|

𝑡=1 ;
14 {Discrimination teacher 𝜙𝑡}
15 X′

𝑖∶𝑗 = [X𝐷
𝑖∶𝑗 ;𝐓𝑦𝑐 ,𝑥𝑖∶𝑗 ] ← Template generation 𝐓𝑦𝑐 ,𝑥𝑖∶𝑗 ;

16 𝐡′

1∶|X′
|

← X′
𝑖∶𝑗 , using BART;

17 �̂�′𝑖∶𝑗 ← 𝐡′

1∶|X′
|

, Eq. (8) for entity discrimination;
18 {Discrimination teaching}
19 for �̂�0𝑡 ∈ �̂�𝐷, �̂�′𝑡 ∈ �̂�′ do
20 �̂�𝑡 ← Eq. (11); #refining

21 �̂�𝐷 ← {�̂�𝑡}
|𝐗𝐷

|

𝑡=1 ;
22 {Collaborative self-training}
23 𝑇𝑆 ← Eq. (7), (11) for alignment;
24 if global_steps % 20 == 0 then
25 𝛽 = exp(−5 ∗ (1 − 𝜖

𝜏 )
2);

26 𝜃′
𝑡 ← 𝛽, Eq. (13) using EMA;

27 {Jointly Optimization}
28 Optimize 𝑎𝑙𝑙 = 𝑅𝑇 + 𝛼𝑇𝑆

5.2. Baseline methods

For comparison purposes, we extensively evaluate our proposed model with a set of low-resource state-of-the-art baseline methods
s follows:

• BOND (Liang et al., 2020): This leveraged multi-source gazetteers and BERT to improve open-domain NER with distant
supervision. The model was also trained using low-resource data.

• LADA (Chen et al., 2020): This proposed a local additivity-based method for semi-supervised NER, which generated augmen-
tations with different sentence structures.

• RoSTER (Meng et al., 2021) : This proposed a self-training method based on a generalized noise-robust loss using distantly-
labeled data. Additionally, the model was trained using low-resource data for improvement.

• NEEDLE (Jiang et al., 2021): This trained deep NER models over a weighted combination of manually labeled and distantly
labeled data.

• LabelSem (Ma, Ballesteros et al., 2022): This learned to match the representations of named entities and labels based on two
BERT encoders.

• Demons (Lee et al., 2022): This proposed demonstration-based NER with in-context learning based on example sampling and
template construction.
8

• SDNet (Chen et al., 2022): This proposed to describe mentions using a universal concept set for few-shot NER.
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Table 1
The symbols and their respective meanings.
Symbol Meaning

𝐗 The input Sentence
𝐘 The entity labels
𝑥𝑡 A token in 𝐗
𝑦𝑡 A entity label in 𝐘
�̂� The predicted entity labels
𝐡 The representation of 𝐗
�̂�∗ * is D or L, denoting the predictions on distant and low-resource data, respectively.
𝑅𝑇 The loss of the recognition teacher
𝐷𝑇 The loss of the discrimination teacher
𝑇𝑆 The loss of the collaborative alignment of the teacher and student.
𝐖,𝐛, 𝜃 The trainable parameters
𝛼 The trading-off hyper-parameter
𝛽 The auto-increment variable
𝐓+ ,𝐓− The templates for entity and non-entity, respectively.

Table 2
Dataset statistics with the number of sequences. #Per denotes the percentage of labeled data. ‘‘HIGH’’ and ‘‘LOW’’
denote the high-resource setting and low-resource setting, respectively. ‘‘Distant’’ is the automatically retrieved
data.
Dataset Train Valid Test Distant #Per

CoNLL-2003 (HIGH) 14,041 3250 3453 – 2.31%CoNLL-2003 (LOW) 200 200 3453 5475

NCBI-disease (HIGH) 5,424 923 940 – 1.58%NCBI-disease (LOW) 50 50 940 409

• MAML (Ma, Jiang et al., 2022): This presented a decomposed meta-learning method for span detection and entity typing.

In addition, high-resource state-of-the-art baselines are compared as follows:

• BiLSTM-CRF (Lample et al., 2016): This proposed a neural architecture based on a bidirectional LSTM with a sequential
conditional random field.

• BERT-Linear/CRF (Kenton & Toutanova, 2019): This used BERT with a linear or CRF classifier.
• ACE (Wang, Jiang et al., 2021): This work automated the process of finding better concatenations of different level embeddings

to enhance NER performance.
• LinkBERT (Yasunaga et al., 2022): This pre-trained a language model by leveraging links between documents for NER.

5.3. Experimental settings

As shown in Table 2, we use the full data in the standard supervised setting. For the low-resource settings, N is set to 50 to
sample supporting examples for each class of 𝐾 classes, and 𝑀 is set to 20 to retrieve maximal top-𝑀 results for each entity. The
elated distant entities and low-resource entities are utilized to provide initial labels for retrieved sentences. For fair comparison,
istantly supervised baselines, e.g., BOND and RoSTER, are provided with the initial distant data. We integrate different PLMs,
.e., BERT (Kenton & Toutanova, 2019) and BART (Lewis et al., 2020), for collaborative self-training. We train the recognition and
iscrimination teacher networks on the low-resource data, while training the recognition student both on low-resource and distant
ata. The outputs of dual teachers are combined to refine labels for distant data. We initialize words as 768-dimensional embeddings
ith the base uncased BERT and the max length of word sequences is empirically set to 400. We use AdamW optimizer (Loshchilov &
utter, 2019) with a learning rate of 3e-5 for training our framework. The ramp-up temperature is set to 80 and the updating period

s empirically set to 20 for EMA. The hyperparameter 𝛼 is set to 1. For the discrimination network, we pre-finetuned BART (Lewis
t al., 2020) for prompt learning. The batch sizes of low-resource and distant data are set to 2 and 16, respectively. This work
ries Masked language modeling (MLM) to warm up BERT with a fill-in-the-blank task (Devlin, Chang, Lee, & Toutanova, 2018)
nd Mixup to directly combine low-resource data with distant data in supervised learning, respectively. We train the framework
or 3 epochs and employ entity-level and token-level precision (P), recall (R), and macro F1-score (F1) for evaluation. The primary
ymbols and their respective meanings are provided as shown in Table 1.

.4. Overall performance analysis

To verify the effectiveness of CoTea, we comprehensively compare our method with existing state-of-the-art baselines on CoNLL-
003 (news domain) and NCBI-disease (disease domain) in high-resource settings and low-resource settings, respectively. Note that
igh-resource settings denote using fully supervised learning with full data for NER as a reference in contrast to low-resource ones.
9
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Table 3
Experimental results on test sets compared to the state-of-the-art methods using low-resource data (𝑝 < 0.05 under
t-test). + denotes using distant labels for original datasets rather than manual labels, but it failed in low-resource
NER. ++ denotes SDNet used 53M external sentences while the other baselines used 1.5M sentences (2.8%).

Model CoNLL-2003 NCBI-disease

P(%) R(%) F1(%) P(%) R(%) F1(%)

HIGH

BiLSTM-CRF (Huang et al., 2015) 92.78 87.43 90.02 85.47 74.32 79.51
BERT-Linear (Kenton & Toutanova, 2019) 90.67 90.10 91.25 83.39 88.31 86.06
BERT-CRF (Kenton & Toutanova, 2019) 89.67 90.85 90.26 85.25 87.29 86.27
ACE (Wang, Jiang et al., 2021) – – 94.60 – – –
LinkBERT (Yasunaga et al., 2022) – – – – – 88.18

LOW

BERT-Linear (Kenton & Toutanova, 2019) 68.14 78.22 72.83 48.20 61.66 54.11
BERT-CRF (Kenton & Toutanova, 2019) 73.45 77.17 75.31 51.75 47.71 49.73
BOND (Liang et al., 2020) + 60.51 51.63 55.72 20.17 27.71 23.34
LADA (Chen et al., 2020) 76.39 83.63 79.39 45.94 65.42 53.97
RoSTER (Meng et al., 2021) 53.72 30.42 38.67 60.02 51.15 55.23
NEEDLE (Jiang et al., 2021) 76.11 82.41 79.27 53.41 54.58 54.00
LabelSem (Ma, Ballesteros et al., 2022) 16.49 14.00 15.14 2.27 1.69 1.94
SDNet (Chen et al., 2022) ++ 79.40 79.66 79.53 44.43 61.46 51.57
Demons (Lee et al., 2022) 76.41 77.35 76.88 44.28 49.58 46.78
MAML (Ma, Jiang et al., 2022) 72.88 75.90 74.36 48.62 52.97 51.24
CoTea 79.47 81.31 80.39 45.24 69.37 57.31

Overall, CoTea significantly outperforms the baselines in low-resource settings and achieves competitive performance compared
ith high-resource baselines, as shown in Table 3. This demonstrates the effectiveness of CoTea, which improves data augmentation
ith collaborative teaching in low-resource settings. Specifically, our CoTea uses about 2.31% and 1.58% labeled data to obtain
early 85% and 65% of the state-of-the-art high-resource performances on these datasets, respectively, which significantly improves
he data efficiency in low-resource domains. Specifically, BOND and RoSTER achieve inferior performances than basic baselines in
he extremely low-resource setting, which is due to the negative effect of external noisy data and their significant dependence on
arget-domain unlabeled data for self-training. LADA and NEEDLE obtain similarly competitive performances on CoNLL-2003 and
CBI-disease, demonstrating data augmentations with virtual examples and re-weighted external examples significantly contribute

o the final performance. Demons also achieves promising results, showing that good demonstrations can save a lot of labor in low-
esource environments. LabelSem and SDNet further incorporated label semantics and a unified label set for NER, but LabelSem,
nfortunately, failed to enhance NER and achieved extremely low performances, which is probably because LabelSem cannot
ffectively learn knowledge from such low-resource data. In contrast, SDNet2 consistently outperforms LabelSem by a large margin,

which should be credited to additional training data (53M) and a unified multi-domain label set. Besides, MAML classified unseen
entities regarding their distances with supporting examples, achieving competitive performances in these domains. This demonstrates
the effectiveness of prototype-based methods and motivates us to explore task-specific metrics for this task.

5.5. Fine-grained performance analysis

As shown in Table 4, we further investigate the performances for fine-grained categories from token-level and entity-level
perspectives, respectively. The token-level overall performance of CoTea slightly surpasses its entity-level overall performance,
denoting that a few tokens of entity mentions are still incorrectly labeled and thus cause performance degradation. The multi-level
fine-grained results of CoTea reflect a similar trend where the overall performance of CoTea is significantly associated with the
category ‘‘MISC’’, which is actually composed of various implicit sub-categories except ‘‘PER’’, ‘‘ORG’’, and ‘‘LOC’’. Another potential
limitation is that the result of ‘‘ORG’’ is slightly worse than the final performance regarding F1 score, which should be credited to
some hard examples associated with ‘‘LOC’’ and thus may confuse model training. Although limited to the performances of some
sub-categories, CoTea still contributes to the performance of low-resource NER, because it can fully leverage limited supporting
examples for entity-related data and label refinement for collaborative teaching.

5.6. Ablation study

To explore each component’s contribution, we conduct an extensive ablation study for CoTea. As shown in the bottom part
of Table 5, CoTea significantly outperforms its ablation counterparts on these two datasets, demonstrating that all its components
contribute to the final performances for NER in low-resource settings. Specifically, (1) ‘‘CoTea w/o RT&DT’’ achieves sub-optimal
results than CoTea, demonstrating that our collaborative teachers can effectively guide models for low-resource NER; (2) The results
of ‘‘CoTea w/o RT’’ significantly reduced, indicating mining entities with the recognition teacher is very critical for model training
using noisy data; Besides, it performs worse than ‘‘CoTea RT&DT’’ on CoNLL-2003 because the discrimination teacher without the

2 It only provides the pre-trained checkpoint based on additional training data (53M).
10
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Table 4
Fine-grained results of CoTea on CoNLL-2003 test set, including token-level and entity-level performance.

Category Token-level Entity-level

P(%) R(%) F1(%) P(%) R(%) F1(%)

PER 94.84 96.72 95.78 93.33 94.31 93.82
ORG 80.88 75.24 78.06 75.82 72.67 74.24
LOC 80.94 84.26 82.60 80.55 85.91 83.23
MISC 68.29 71.79 70.04 68.19 72.36 70.28

overall 81.24 82.00 81.62 79.47 81.31 80.39

Table 5
Ablation study on test sets; ‘‘w/’’ denotes ‘‘with’’ and ‘‘w/o’’ denotes ‘‘without’’. ‘‘MLM’’ denotes masked language
modeling and ‘‘Mixup’’ denotes mixing supporting labeled data with distant data. ‘‘DT’’ and ‘‘RT’’ are the
recognition teacher and the discrimination teacher, respectively.

Model CoNLL-2003 NCBI-disease

P(%) R(%) F1(%) P(%) R(%) F1(%)

CoTea w/ MLM 74.72 78.21 76.47 18.93 10.31 14.62
CoTea w/ Mixup 73.67 76.29 74.98 44.79 46.15 45.47

CoTea w/o RT&DT 76.09 78.33 77.21 53.14 55.52 54.33
CoTea w/o DT 79.41 81.31 80.35 45.67 68.65 57.16
CoTea w/o RT 72.04 67.39 69.71 36.65 54.06 45.36
CoTea 79.47 81.31 80.39 45.24 69.37 57.31

Table 6
Case study with CoTea for low-resource NER. ▴ NEs and ▾ NEs denote distant and low-resource named entities, respectively. () denotes the similarity score of
the retrieved NEs. We initialize the distant labels by matching all existing entities including low-resource NEs and for the augmented corpus. Other potential
(underlined) entities are recognized by our method.

Van Boxmeer said Zywiec had its eye on Okocim.
■ PER ■ ORG ■ LOC ■ MISC

▴ NEs (Score) Related Sentences ▾ NEs

Jean-François van Boxmeer (194.80) Jean-François van Boxmeer is a Belgian businessman.
John Van Boxmeer (167.67)
(...)

John Martin Van Boxmeer is a Canadian former professional ice hockey player. He has also served
extensively as a hockey coach with various teams from 1984 to the present.

Canadian

Żywiec Beskids (58.81) The Żywiec Beskids is a mountain range in the Outer Western Carpathians in southern Poland. Poland
Okocim Brewery (42.37)
(...)

Okocim Brewery, in Brzesko in southeastern Poland, is a brewery founded in 1845. (...) (...)

recognition teacher may also introduce label noise, e.g., making wrong relabeling, thus reducing robustness; (3) ‘‘CoTea w/o DT’’
achieves sub-optimal results than CoTea, demonstrating that the discrimination teacher contributes to the final performance of
our recognition models. Besides, it performs better than ‘‘CoTea w/o RT’’, indicating that mining potential entities from distant
data provides much informative guidance for training NER models; (4) We explored masked language modeling (MLM) and mixup
strategies, but with poor performance. A potential reason is that the distribution of open-domain remote data is different from that
of target-domain data and thus causes the model overlap to noise. This highlights the need to refine training methods for addressing
distribution disparities. In summary, CoTea benefits low-resource NER through collaborative teaching with a divide-and-conquer
strategy, obtaining better performance and robustness.

5.7. Case study

To analyze how CoTea augments NER in the low-resource domain, we conduct a case study on our framework, as shown in
able 6. Given a labeled sentence ‘‘Van Boxmeer said Zywiec had its eye on Okocim’’ containing three named entities, i.e., ‘‘Van
Boxmeer ’’ (PER), ‘‘Zywiec’’ (ORG) and ‘‘Okocim’’ (ORG), we use these entities to recall more related entities and descriptions.
For example, the entity ‘‘Van Boxmeer ’’ in red is used as a query to find a set of distant entities and their descriptions for data
augmentation, e.g., the entity ‘‘Jean-François van Boxmeer (194.80)’’ (The higher the entity score, the more relevant it is) and its
description ‘‘Jean-François van Boxmeer is a Belgian businessman’’. In addition, distant entities (▴ NEs) and low-resource entities (▾
NEs) are combined to initialize the distant labels for description sentences and the other (underlined) potential entities are recognized
and refined using our recognition and teacher networks. This verifies the effectiveness of CoTea to obtain distant data for the model
training.
11
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Fig. 3. Parameter sensitivity analysis of CoTea.

Fig. 4. The impact of 𝑁-shot supporting labeled data for CoTea.

5.8. Parameter sensitivity analysis

To verify the effect of parameters on the effectiveness of the CoTea, we conduct sensitivity analysis by varying the primary
parameters, i.e., learning rate and trade-off parameter 𝛼. The learning rate is a hyperparameter that determines the step size at each
iteration while moving toward a minimum of a loss function in algorithms, and the trade-off parameter 𝛼 controls the contributions
of loss terms in the overall loss. To study uncertainty in the output of our proposed model, we employ single-parameter sensitivity
analysis by varying one parameter while fixing the others each time. As shown in Fig. 3, CoTea keeps high performance while the
parameter varies on the two benchmark datasets, demonstrating that collaborative teaching contributes to low-resource NER, and
further verifies the effectiveness and robustness of our proposed framework. The results also open avenues for investigating the
potential of collaborative teaching in other tasks. As demonstrated by the analysis, the stability and effectiveness of CoTea make it
a promising tool for tackling challenges in low-resource conditions, contributing to advancing the field.

5.9. Parameter analysis on few-shot settings

To analyze the impact of 𝑁 shots supporting labeled data on CoTea and explore the causes behind characteristics, we further
conduct few-shot experiments on these datasets, where only 𝑁-shot labeled data is available for training without additional valid
data in such extreme settings.

Fig. 4 shows the trend that the entity-level F1 score (dotted line) of CoTea consistently increases with more supporting labeled
data on these datasets, indicating that supporting data is important for model training and that more labeled data contributes to
the final performance. Note that the token-level performance of CoTea shows a similar trend regarding F1 score. Specifically, CoTea
achieves inferior performance when the labeled data is extremely rare, i.e., 1 shot. This indicates that we should provide a certain
amount of supporting labeled data for better performance. In addition, CoTea can achieve much better performances with more
than 5 shots supporting examples, which demonstrates the effectiveness and robustness of CoTea in few-shot settings.
12
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Fig. 5. t-SNE plot of sentence embeddings for the target (i.e., Train and Test) and open (i.e., Distant) domains, respectively. Distant data is retrieved from
different sources. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Quantitative analysis of EMA in CoTea. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

5.10. Visualization of data distribution

To further analyze the superiority of the proposed method in low-resource settings, we visualize the data distribution as shown
in Fig. 5, including the sentence embeddings of target-domain (‘‘Train’’ and ‘‘Test’’) and distant data (‘‘Distant’’). We can conclude
that (1) The distributions of the train (blue) and test (green) data are overlapped with each other, indicating that they share more
similar features so as to train models on the target domain; (2) The distant data (red) shows a different distribution in the space
comparing with target-domain data, i.e., the train and test data. This suggests that we should use them to learn general entity
pattern features, rather than simply obfuscating them; (3) Furthermore, although not always available, more labeled data on the
target domain is likely to help the final performance. Therefore, we introduce a more general divide-and-conquer framework to deal
with the low-resource and external data, which can utilize external knowledge and alleviate the impact of noise.

5.11. Quantitative analysis of EMA

To investigate the influence of EMA in our proposed method, quantitative experiments were conducted on the CoNLL-2003 and
NCBI-disease datasets. we employed single-parameter sensitivity analysis by systematically selecting fixed values from the range
[0.1, 0.3, . . . , 0.9] for the parameter 𝛽 in Eq. (13). As shown in Fig. 6, the blue bars represent the performances of CoTea with
different fixed 𝛽 but without EMA, denoted as ‘w/o EMA.’ In contrast, the orange line depicts the performance of CoTea with EMA,
denoted as ‘w/ EMA,’ facilitating analysis and comparison. The experimental results indicate that CoTea with EMA consistently
outperforms its variants with fixed parameters regarding F1 score. This superiority is attributed to the noise tolerance provided by
EMA, thereby enhancing the overall performance of CoTea. Furthermore, CoTea’s optimal performance is achieved through a careful
balance between the student and teacher models, as high 𝛽 values (e.g., 𝛽 = 0.9) yield poor results. In summary, the incorporation
of EMA enhances the effectiveness and robustness of the teacher model, with a ramp-up strategy automatically determining an
appropriate 𝛽 for effective ensemble weighting.
13
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6. Conclusion

This paper presents a novel collaborative teaching for low-resource NER, which provides an effective paradigm to alleviate data
carcity in low-resource settings and improve the performance of this task. Specifically, this automatically retrieves entity-related
ata using existing knowledge and unifies the different pre-trained language models as collaborative teachers to generate refined
abels for distant data. In addition, we explicitly take a divide-and-conquer strategy to re-label the entity- and non-entity parts,
espectively and eventually reach the optimal equilibrium point of teachers. Extensive experimental results demonstrate that our
oTea outperforms existing baselines in low-source settings and also achieves comparable results with the state-of-the-art baselines

n standard supervised settings. For future work, we consider utilizing the proposed framework for other tasks in low-resource
ettings, which can significantly save the annotation cost and improve the task performance in a new domain.
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