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ABSTRACT

Image Captioning is a traditional vision-and-language
task that aims to generate the language description of an im-
age. Recent studies focus on scaling up the model size and
the number of training data, which significantly increase the
cost of model training. Different to these heavy-cost mod-
els, we introduce a lightweight image captioning framework
(I-Tuning), which contains a small number of trainable pa-
rameters. We design a novel I-Tuning cross-attention module
to connect the non-trainable pre-trained language decoder
GPT2 and vision encoder CLIP-ViT. Since most parameters
are not required to be updated during training, our framework
is lightweight and fast. Experimental results conducted on
three image captioning benchmarks reveal that our frame-
work achieves comparable or better performance than the
large-scale baseline systems. But our models contain up to
10 times fewer trainable parameters and require much fewer
data for training compared with state-of-the-art baselines.

Index Terms— Lightweight image captioning, Language
models, Transformer, Cross-Modal

1. INTRODUCTION

Image Captioning is a critical task in the field of cross-modal,
which focus on natural language generation to depict an im-
age. Recent years have witnessed the success of applying
large-scale pre-trained models on the task of image caption-
ing, which generally scale up the number of trainable pa-
rameters and training data to achieve state-of-the-art perfor-
mances [1, 2, 3, 4]. For example, a recent proposed OSCAR
model [1] contains more than 135M trainable parameters and
requires around 4M images during pre-training. Therefore, in
spite of the performances, the heavy demands for extra com-
putational resources and massive data for model training have
become an urgent issue.

Recent studies showed that parameter-efficient pre-trained
language models (PLMs) tuning [5] can effectively reduce the
cost during training, where most parameters are frozen (i.e.,
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Fig. 1. Image captioning performances on MSCOCO dataset
based on the lightweight and large-scale models, where I-
Tuning-Base/-Medium/-Large respectively denote our model
with base/medium/large number of trainable parameters.

not updated during training) and the rest small set are train-
able. [6] recently introduced a ClipCap model that transforms
images into fixed-length vectors and prompts a frozen GPT2
for image captioning. However, the learned vectors cannot
capture accurate visual information to enhance the caption
generation. To overcome these shortcomings, we propose a
novel lightweight image captioning framework (I-Tuning)
to alleviate the cost in terms of computational resource and
training data. We design an I-Tuning module to connect
the pre-trained vision encoder (i.e., CLIP-ViT [7]) and the
language decoder (i.e., GPT2 [8]). To align between the lan-
guage and vision modals, it serves as a cross-modal filter that
automatically picks the visual information from the output
of the vision encoder and adjusts the output hidden states of
the language decoder. During training, we only update the
newly introduced parameters in the I-Tuning module, and the
parameters of the two pre-trained models are frozen.

Figure 1 examplifies the CIDEr scores of our lightweight
models and large-scale baselines. In terms of model training,
our basic model I-Tuning-Base only contains around 14M
trainable parameters, namely 10 times fewer than the other
large-scale models such as OSCAR. In terms of data, even
our I-Tuning-Large model can achieve comparable perfor-
mances with relatively less training data. We evaluate our
proposed framework on 3 image captioning benchmarks (i.e.,IC
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MSCOCO [9], Flickr30k [10] and NoCaps [11]). The re-
sults show that our I-Tuning framework achieves comparable
or even better performances than large-scale baselines with
up to 10 times fewer trainable parameters and much fewer
cross-modal training data. Moreover, our I-Tuning model
is agnostic to the pre-trained language models, suggesting a
broadly applicable framework.

2. RELATED WORK

CLIP-ViT and GPT2. CLIP-ViT [7] is the state-of-the-art
vision encoder. It is pre-trained with contrastive loss [12]
to supervise the vision encoder with language description.
GPT2 [8] is the state-of-the-art language decoder, which is
pre-trained with large-scale text data. In this work, we pro-
pose a lightweight image captioning framework I-Tuning to
leverage these two off-the-shelf pre-trained models.

Image Captioning. Generating the language descriptions
from images is an important task to examine the vision-and-
language representation ability of a cross-modal model. The
recent works choose to increase the model size and the num-
ber of training data to further boost the performance [1, 2, 3,
4, 13]. The training process of these models is heavy. As
an alternative, the ClipCap model [6] proposes a lightweight
captioning model by connecting the off-the-shelf CLIP-ViT
and GPT2. However, their method cannot filter the relevant
visual information to adjust the output hidden states of GPT2,
leading to poor image captioning performance.

Parameter-efficient PLMs Tuning. Recently, the model
size of a pre-trained model becomes larger and larger, which
makes us hard to fully fine-tune such models. To make use
of them without updating all parameters, researchers propose
several great ideas, such as Prefix tuning [14], Adapter tun-
ing [5] and Prompt tuning [15]. However, most of them only
focus on the NLP area. Our I-Tuning extends the parameter-
efficient PLMs tuning idea to the cross-modal setting.

3. THE PROPOSED I-TUNING FRAMEWORK

Overview. Our framework contains three components, the
non-trainable vision encoder (CLIP-ViT), the non-trainable
language decoder (GPT2), and the trainable I-Tuning Mod-
ule. During training, our framework is trained with the paral-
lel image-caption data and only updated the parameters of the
lightweight I-Tuning Module.

During inference, a frozen visual encoder first generates
the visual embeddings V of a given image. Then the I-Tuning
module serves as a lightweight filter to pick the relevant vi-
sual information to tune the output hidden states of the frozen
language model. As a result, the language generation is con-
ditioned with the given image.

Visual Encoder and Language Decoder. In our frame-
work, we adopt the state-of-the-art vision pre-trained trans-
former, CLIP-ViT [7] to generate an image’s visual embed-
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Fig. 2. An overview of our I-Tuning framework for
Lightweight Image Captioning.

dings V . Such model takes a sequence of image patches
as input and visual representations for each patch as output.
For the Language Decoder, we leverage the state-of-the-art
auto-regressive pre-trained language model (PLM), GPT2 [8],
which is a multi-layer Transformer Decoder model [16] with
remarkable language generation ability.

I-Tuning Module. In our framework, the I-Tuning mod-
ule is the key component to extract the relevant visual infor-
mation from the visual embeddings, which is parallel to a spe-
cific PLM module (feedforward) in each Transformer layer.
Such module is a bottleneck neural network, sharing a similar
structure as the Adapter module [5], but the non-linear acti-
vation function is replaced by a cross-attention network (see
Figure 2) to filter the visual information from images. The
calculation process is as follows:

QL = WQ
down(X) + bQ, (1)

KV = WK
down(V ) + bK , (2)

VV = WV
down(V ) + bV , (3)

where X is the input hidden states of a specific PLM mod-
ule. Then we can get the attention scores across the visual
embeddings:

S = softmax(QLK
T
V ). (4)

Based on the scores, we can get the final I-Tuning output to
adjust the output hidden states of the PLM module:

∆h = λWO
up

(∑
i

siVV i

)
+ bO, (5)

where λ ≥ 1 is a scaling hyper-parameter.
Since the lower layers of PLMs have weaker representa-

tion ability, we also propose I-Tuning Dropping to remove
the I-Tuning modules in the first-few layers. As a result,
backpropagating through fewer layers can further improve the
training efficiency of our models.

Training Objective. The objective is the auto-regressive
language modeling conditioned on the visual information:
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Model #Images #Params MSCOCO (test) Flickr (test)
CIDEr BLUE@4 METER SPICE CIDEr BLUE@4 METER SPICE

Large-scale Cross-Modal Pre-trained Image Captioning Model
OSCARbase(no tags) [1] 4M 135M 115.6 34.5 29.1 21.9 - - - -
OSCARbase♠ [1] 4M 135M 123.7 36.5 30.3 23.1 - - - -
Unified VLP [2] 3M 135M 117.7 36.5 28.4 21.3 67.4 30.1 23.0 17.0
XGPT [3] 3M 135M 120.1 37.2 28.6 21.8 70.9 31.8 23.6 17.6
UniTAB [4] 200k 135M 119.1 35.8 28.4 21.5 70.1 30.7 23.7 17.4
VL-T5 [17] 180k 270M 116.5 34.5 28.7 21.9 - - - -
Lightweight Image Captioning Model
ClipCap(GPT2-Large) [6] 0 43M 113.1 33.5 27.5 21.1 - - - -
Our Lightweight Models w/o VLP
I-Tuning(GPT2-Base) 0 14M 116.7 34.8 28.3 21.8 61.5 25.2 22.8 16.9
I-Tuning(GPT2-Medium) 0 44M 120.0 35.5 28.8 22.0 72.3 28.8 24.6 19.0
I-Tuning(GPT2-Large) 0 95M 119.4 34.8 29.3 22.4 75.4 29.8 25.1 19.2
Our Lightweight Models w/ VLP
I-Tuning(GPT2-Base) 110k 14M 118.3 35.2 28.5 22.0 68.4 27.5 24.0 18.4
I-Tuning(GPT2-Medium) 110k 44M 119.1 34.8 29.2 22.2 73.2 29.1 25.2 19.9
I-Tuning(GPT2-Large) 110k 95M 122.2 35.9 29.5 22.6 77.2 30.0 25.5 20.2
Our Lightweight Models w/ I-Tuning Dropping
I-Tuning(GPT2-Large) 110k 47M 122.1 36.1 29.4 22.6 79.2 31.1 25.3 19.9

Table 1. Evaluations on MSCOCO and Flickr Image Captioning. “-” represents that the model does not report such result in
its original paper. Bold indicates the best scores of our models. #Images represents the number of distinct images during VLP.
#Params represents the number of trainable parameters. ♠: Extra training data are needed to generate the object tags.)

L = −ΣT
t=1 logP (xt|x<t, V ), where V represents the visual

embeddings encoded by the frozen visual encoder, T denotes
the length of a sequence and x<t = (x0, ..., xt−1).

4. EXPERIMENT

4.1. Dataset and Setup

We adopts CLIP-ViT B/16 as our visual encoder and GPT2
as language decoder. All of them are frozen during train-
ing. We include 3 different GPT2 model sizes, includ-
ing Base, Medium and Large. For I-Tuning modules, the
parameters are randomly initialized and updated during
training. For VLP, we adopt the cross-modal dataset, Vi-
sual Genome [18], which contains 110k distinct images.
To evaluate our methods, we use three datasets, namely
MSCOCO [9], Flickr30k [10] and NoCaps [11]. For the
first two datasets, we follow the Karpathy’s split [19] to
split 113.2k/5k/5k and 29.8k/1k/1k images for train/val/test,
respectively. We adopt CIDEr [20], BLEU@4 [21], ME-
TEOR [22] and SPICE [23] as metrics to evaluate the gen-
erated captions. We train our models with the AdamW [24]
and 4k batch size. For VLP, our models are pre-trained with
10 epochs. For training on downstream tasks, our models
are trained with 30 epochs. For inference, we use the beam
search (beam size = 5) to generate captions.

4.2. Result Analysis

Table 1–2 reveal that our lightweight image captioning frame-
work achieves comparable or better performance than all the

large-scale baselines, but contains up to 10 times fewer train-
able parameters and/or consume much fewer VLP data.

I-Tuning without VLP. As shown in Table 2, our method
outperform the large-scale baselines even without VLP. Es-
pecially, the overall CIDEr score of the OSCAR model on
the NoCaps even lags behind the frozen GPT2-base with
our I-Tuning modules by around 2 points, while our model
contains around 120M fewer trainable parameters. With the
larger GPT2, the performance gap becomes larger. Moreover,
our method is also sample efficient. Without any cross-modal
pre-training, our I-Tuning (GPT2-Medium) already outper-
forms some baselines with VLP. For example, VL-T5 is
pre-trained with 180k distinct cross-modal images, but the
CIDEr scores are around 3.4 lower than ours on MSCOCO.

I-Tuning with VLP. Table 1 reveals that after cross-
modal pre-training, our I-Tuning method achieves better
overall performance than all the baseline systems (except OS-
CAR w/ object tags). Especially, our I-Tuning can achieve
a CIDEr score of 122.1 on MSCOCO test set, surpassing
the XGPT model by 2.0 points, while our method requires
less trainable parameters and training data. For the OSCAR
model, it requires object tags during pre-training and fine-
tuning. Additional supervision is needed to generate these
tags. One can find that our lightweight I-Tuning frame-
work still reaches comparable performance with only 1.5
CIDEr score lower, while our model requires around 90M
less trainable parameters and 30 times less distinct VLP im-
ages. Without the help of object tags, OSCAR even lags
behind our models without VLP.

I-Tuning with Dropping. Since the lower layers of GPT2
have weaker representation ability, we investigate whether we
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Model #Params in-domain near-domain out-of-domain Overall
CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

OSCARbase [1] 135M 79.6 12.3 66.1 11.5 45.3 9.7 63.8 11.2
ClipCap(GPT2-Large) [6] 43M 84.9 12.1 66.8 10.9 49.1 9.6 65.8 10.9
Our Models
I-Tuning(GPT2-Base) 14M 83.9 12.4 70.3 11.7 48.1 9.5 67.8 11.4
I-Tuning(GPT2-Medium) 44M 89.6 12.9 77.4 12.2 58.8 10.5 75.4 12.0
I-Tuning(GPT2-Large) 95M 89.6 13.3 80.4 12.6 64.8 11.0 78.5 12.4
Our Models w/ Dropping
I-Tuning(GPT2-Large) 47M 88.3 12.7 80.8 12.6 66.1 10.8 78.9 12.3

Table 2. Evaluations on NoCaps image captioning. Models are only trained with MSCOCO training set without VLP. #Params
represents the number of trainable parameters. Bold indicates the best scores.

Image

Golden
Captions

(1) A man with a red helmet on a
small moped on a dirt road.
(2) Man riding a motor bike on a
dirt road on the countryside.

(1) A young girl inhales with the
intent of blowing out a candle.
(2) A young girl is preparing to
blow out her candle.

(1) A man on a bicycle riding next
to a train.
(2) A person is riding a bicycle but
there is a train in the background.

(1) A kitchen is shown with a variety
of items on the counters.
(2) A kitchen has the windows open
and plaid curtains.

Model Generated Caption
ClipCap
(GPT2-Large)

a man is riding a motorbike on
a dirt road.

a young girl sitting at a table
with a cup of cake. a man is standing next to a train. a kitchen with a sink and a window

OSCARbase
a man riding a motorcycle down
a dirt road.

a woman sitting at a table with
a plate of food.

a woman riding a bike down a
street next to a train.

a kitchen with a sink, dishwasher
and a window

I-Tuning
(GPT2-Large)

A man riding a motorcycle on
a dirt road.

A little girl blowing out a
candle on a birthday cake.

A man standing next to a train
on a train track.

A kitchen sink sitting under a window
next to a window.

Table 3. Examples of our I-Tuning, OSCARbase and ClipCap for the first 4 images in the MSCOCO test set. (Red = inaccurate)

can drop the I-Tuning modules in the first few layers, so
that we can further reduce the computational overhead dur-
ing training and inference. Table 1 shows that it is not neces-
sary to include the I-Tuning models in all layers. Especially,
dropping the I-Tuning modules in the first-18 layers can even
improve the performance of our model on some evaluation
metrics, while the number of trainable parameters is reduced
by 50%, improving the efficiency of our models.

Qualitative Evaluation. Table 3 presents the image cap-
tioning examples of I-Tuning, OSCAR and ClipCap for the
first 4 images in the MSCOCO test set. The generated cap-
tions of I-Tuning depict the image successfully, which can
identify the movement of the people in the image. For exam-
ple, our model can recognize that the little girl is blowing the
candles, while ClipCap and OSCAR cannot.

4.3. Cross-Attention Visualization

We visualize the cross-attention maps of I-Tuning to exam-
ine whether it learns the cross-modal information alignment
implicitly. We randomly choose an image in the MSCOCO
dataset and present the cross-attention heatmaps in the final
I-Tuning module of GPT2-Large. Figure 3 shows that our
I-Tuning module can correctly attend to the corresponding
image regions given different tokens. These examples reveal
that our method can learn visual grounding implicitly.

Original Image woman shirt racket

Fig. 3. Visualization of the cross-attention maps of text tokens
in the caption “A woman in a blue shirt holding a racket”.

5. CONCLUSION

In this paper, we present a novel lightweight image caption-
ing framework, I-Tuning, which efficiently tunes the frozen
PLMs with images. Extensive experiments are conducted to
verify the effectiveness of our method. Compared with the
baseline systems, our method achieves comparable or even
better performance, while our models require up to 10 times
fewer trainable parameters and much fewer training data.
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