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Abstract—Fact checking in product-related community ques-
tion answering is the task of verifying the truthfulness of an
answer towards a given question, where the study has just begun.
Most existing related work has focused on tailoring solutions to
shallow feature fusion for the single-text claim involved with fact-
checked evidence, limiting their success and generality in such
answer truthfulness prediction task on E-commerce platforms. In
this study, we propose an attention-based hybrid framework for
multi-feature interaction fusion to determine the truthfulness of
the answer towards a product-related question in E-commerce,
which could not only support fine-grained semantic calibration
between question-answer pairs for better understanding of the
target answers, but also substantially cross-check all retrieved
evidence to mine coherent opinions towards the pair. In addition,
our framework further integrates non-textual features from
metadata for improving performance. Extensive experiments
conducted on real-world representative benchmark data show
that our proposed model achieves superior performance on the
task of answer veracity prediction.

Index Terms—Community question answering, fact checking,
hybrid model, multi-feature fusion, E-commerce

I. INTRODUCTION

To help potential customers eliminate doubts, E-commerce
websites (e.g., Amazon, Taobao, etc) provide community
question answering services as shown in Figure 1 to facilitate
online shopping via product-related discussions among users.
Nevertheless, the user-generated messages on these community
forums to answer the online questions are generally less
accurate or flawed in terms of veracity, without systematic effort
to moderate the messages [1]. Misunderstanding of questions,
improper expression in writing, and even malicious attacks
from competitors can lead to untruthful answers [2]. However,
checking whether the answers are factually correct or not
towards a given question is usually ignored by conventional
community question answering (CQA) research [3]–[6], where

This work was partially supported by MoE-CMCC ”Artificial Intelligence”
Project No. MCM20190701, HKBU One-off Tier 2 Start-up Grant (Ref.
RCOFSGT2/20-21/SCI/004) and HKBU direct grant (Ref. AIS 21-22/02).

*The first two authors contributed equally to this work.

…

…

Fig. 1. Example of question answering in E-commerce, with relevant product
information like the product description and user reviews.

a candidate answer is considered GOOD if it is semantically
relevant to or tries to address the question, irrespective of its
veracity, accuracy, etc [7].

Fact checking for question answering in E-commerce (FC-
QA) aims to predict the veracity of a given answer with respect
to a question about a specific product. Traditional approaches
for CQA tasks focused on relevance matching between the pair
of question and answer [4]–[6]. Recent methods for automatic
fact checking were proposed to verify a piece of claim or
statement utilizing evidence extracted from various outlets [8]–
[10]. However, few previous studies are related to such answer
truthfulness prediction task, which has just begun.

To study fact checking in CQA, [7] investigated the potential
need of predicting the veracity of answers in community forums
and initially formulate the problem of FC-QA. Following that,
[11] proposed an evidence-aware model with tailored evidence
interpolation in the context of CQA problems. However, the
above studies only considered relatively shallow feature fusion
strategies like concatenation or simple neural networks for the
QA settings, but failed to exploit the close semantic correlations
between the question and answer. On the other hand, existing
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(a) The average length of answers with time gap. (b) The label distribution with time gap. (c) The label distribution with product domain.

Fig. 2. The illustration for the impact of metadata on the quality of answers.

TABLE I
AN EXAMPLE QUESTION (Q) AND ANSWER (A) TOGETHER WITH RELEVANT

PRODUCT INFORMATION (s1-s5) AS RETRIEVED EVIDENCE.

Q: Can i insert a tmobile sim card into this phone?
A: Sorry. . . That’s not gonna work out. . .it’s a Verizon phone. No sim.

s1: The one thing they could do is tell you that it does not come with a sim card
and for Page Plus you have to buy separate.
s2: Had to send it back because it didn’t come with sim card and would not work
with my prepaid plan.
s3: They provided a SIM card and made the change to my account.
s4: plugged in my old Verizon sim card from last phone and it worked in minutes.
s5: put old phones sim card in and the phone worked immediately.

Explanation: “That” and “it” in A refers to “insert sim into phone” and “phone” in Q
respectively. The evidence s4 and s5 can further be indicative of the answer veracity.
Verdict: False

state-of-the-art methods largely ignored or oversimplified the
mutual corroboration between pieces of evidence from raw
retrieved auxiliary information, as not all evidence sentences are
equally useful and reliable, which can be misled by conflicting
evidence sentences and makes random predictions.

The example in Table I illustrates our general idea in this
paper: given a question-answer pair and its relevant pieces
of evidence such as product description and user comments,
we try to understand the answer based on the context of the
question and attend over the most evidential sentences to verify
the answer. Firstly, we observe that antecedents of the referent
like “that” and “it” in the answer, are the mentions in the
question. We argue that the first key to FC-QA task is to
excavate the rich inter-relationship by interpretable reasoning
about the interplay of QA pairs. Besides, to eliminate unreliable
information (e.g., the marginal evidence s3) from the evidence
set, coherent opinions captured by comparing all shreds of
evidence would further enhance automatic verification for the
answer [12], [13]. This is because the semantic clues, such as
entailment expression (in green) and conflicting snippets (in
red), are ubiquitous between the answer and evidence in terms
of the question context (in blue).

Then, another shortcoming we look to address is the paucity
of metadata utilization for FC-QA. Previous literature [14],
[15] showed that the inclusion of non-textual metadata in the
E-commerce field will also have an impact on the prediction
task related to data mining. Figure 2 illustrates the indicative
signals of metadata on the answer veracity from a real-world
benchmark (i.e., AnswerFact [11]). From Figure 2(a)-(b), we
can see that the time gap between the question and answer can

TABLE II
THE EXAMPLES OF THE ANSWERS AT DIFFERENT TIMES TO THE GIVEN

QUESTION.

Product Domain: Home and Kitchen

Question: How many holder holes are in the 108” curtain?
Time: July 3, 2013

Answers Time Verdict

12. August 1, 2013 False
No, there are not 12! There are 18 holes in the
108” curtain. I just measured the curtain and
counted them to be sure.

September 18, 2013 True

imply the quality of the answer to some extent. For instance, the
longer the time gap between the question and answer, the larger
the length and the higher the quality of the answer. In particular,
the average length of answers more than 1 month after the
question was posted tends to level off over time, and nearly
80% of the answers are considered to be positive (i.e., TRUE or
PARTTRUE), with the unsure answers less than 10%. To better
illustrate our intuition, Table II exemplifies a case that users in
E-commerce tend to correct previous wrong answers and give
more factually correct answers over time. Not only that, but the
product domain of the question is also one of the factors that
imply the quality of the answer. As Figure 2(c) demonstrates,
the answers in ‘Home and Kitchen’ have a relatively higher
probability (> 70%) to be positive meanwhile with the unsure
answers less than 14%, when compared with other product
domains. These phenomena suggest that the interaction between
metadata (e.g., product domain, time stamp, and text length)
can be used to facilitate the answer truthfulness prediction.

To this end, we propose a novel Attention-based hybrid
deep model for Multi-feature Interaction Fusion (AMIF) to
predict the truthfulness of each answer towards a given question,
which not only considers a thorough understanding of the
answer evoked by the question but also exploits relevant
product information to capture coherent pieces of evidence
to verify the answer in a unified framework. Specifically,
a QA reasoning calibration module is proposed at first to
support the semantic matching between the question and answer.
Meanwhile, to explore the relatively informative evidence as a
readable explanation, we employ a self-attention mechanism
to cross-check all retrieved evidence, and a gate-induced
decoupling mechanism is designed for the credibility ranking
of each piece of evidence, which disentangles entailment and
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conflicting semantics from the feature correlation between the
answer and shreds of evidence based on the context of the
question. Moreover, we further fuse the non-textual metadata
from E-commerce websites with the textual representation via
a factorization-machine based neural network [16] to improve
our proposed method. Experiments conducted on the real-world
FC-QA benchmark [11] show that our proposed model achieves
superior performance on FC-QA task and provides rational
explanations of the prediction by optimizing token-level QA
similarity and extracting informative evidence for prediction.
The main contribution of this paper are of three-fold:
• We propose a novel hybrid deep framework to fuse

multiple features from questions, answers and auxiliary
information for answer truthfulness identification to inves-
tigate the problem of fact checking in product question
answering.

• Our attention-based framework not only learns a fine-
grained understanding of the answer in the question
context by the reasoning calibration over the QA pairs,
but also explores the coherence of evidence sentences via
trust cross-checking and credibility ranking. Moreover, we
model interactions of non-textual features from metadata
in E-commerce to further improve the performance.

• Experimental results have demonstrated the state-of-the-
art performance of our proposed AMIF on real-world
E-commerce data.

II. RELATED WORK

Community Question Answering. With the development of
online community forums, community question answering
(CQA) has become an emerging research topic in recent
years [5], [6], [17], [18]. Recent neural networks [19]–[21]
have been actively applied to the answer selection task and
achieved good results, which consider the label of an answer
to be positive if the answer is semantically relevant to
the corresponding question irrespective of its veracity (our
focus here). Yet, in the context of CQA, there has been
work on quality assessment of answers, e.g. available answer
ranking [22] and answer helpfulness prediction in product-
related CQA forums [23]. Fact checking in question answering
scenario generally focus on only using article (QA pairs)
contents [1], [7]. In this paper, we study the novel problem of
fact checking in product question answering, aiming to improve
veracity prediction of an answer for a given question making use
of evidence and metadata in E-commerce as external sources.
Fact Checking. Previous comprehensive surveys have reviewed
the extensive literature on fact checking and credibility assess-
ment [24]–[28]. Hereinafter, we only give a brief review of prior
works closely related to the evidence-based fact checking. Deep
learning models such as recurrent neural networks (RNN) [29]
and convolutional neural networks (CNN) [30] were exploited
to learn the claim and evidence representations. [9], [31],
[32] built a pipeline to find documents and sentences for
fact checking of mutated claims generated from Wikipedia
pages. [33] aimed to find webpages related to given fact-
checking articles and predict their stances on claims. The

word-level [8] and sentence-level [34] attention mechanism
on relevant articles were utilized to debunk false claims
by learning claim and evidence representations, respectively.
Evidence-ranking methods [10], [11] are then proposed to
conduct veracity prediction for fact checking. However, due to
the insufficient multi-feature fusion in these approaches, the
rich context in the question, the coherence cross-checked by
pairwise evidence, and the indicative signal from metadata in
E-commerce are not fully explored to facilitate the answer
truthfulness prediction.

III. METHODOLOGY

We define a fact checking question answering dataset as {C},
where each instance C = (q, a, y, S,M) is a tuple representing
a question q, an answer a, a ground-truth label y indicating the
verdict of a, a set of relevant evidence sentences S = {si}ni=1,
and the non-textual metadata set M in E-commerce. Our task
is to classify an answer into a pre-defined veracity class, e.g.,
True, False, etc.

In this section, we introduce our interpretable FC-QA
model, which consists of four components: context encoder,
QA reasoning calibration, evidence coherence modeling and
metadata fusion. Figure 3 gives an overview of our framework,
which will be depicted in detail in the subsections.

A. Context Encoder

Given each token in a text sequence that could be either q,
a, or si, we map it into a representation w initialized with pre-
trained word vectors. We then model the context interactions
among tokens in the sequence using a Bi-LSTM encoder:

xt = Bi-LSTMc (wt, xt−1) (1)
where xt is the hidden state of the Bi-LSTM encoder at

the t-th time step. We thus denote the representation of the
question q, the answer a and the i-th evidence sentence si after
such context-aware encoding as Xq , Xa and Xsi respectively:
X∗ =

[
x∗1, x

∗
2, ..., x

∗
|∗|

]
; ∗ ∈ {q, a, si}, where Xq ∈ R|q|×d,

Xa ∈ R|a|×d and Xsi ∈ R|si|×d, d is the dimension of the
hidden state of the Bi-LSTM encoder.

B. QA Reasoning Calibration

There is a rich inter-relationship between the answer and
question, e.g., answers tend to use pronouns for referring back
to mentions in questions. For example, for the QA in Table I,
“that” (in A) refers to “insert sim into phone” (in Q). To support
token-level semantic calibration between the question and the
answer for better context understanding, we first evolve the
question representation into that of the answer:

Xa
q = ReLU

(
U>XqWqa

)
Uij =

exp
(
xqi
>
xaj

)
∑
ij

exp
(
xqi
>
xaj

) (2)

where Xa
q ∈ R|a|×d is the attended question representation

which represents each answer token by aggregating features
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Fig. 3. The architecture of our proposed framework. The blue background por-
tion denotes the QA Reasoning Calibration module and the green background
portion denotes the Evidence Coherence Modeling module. The non-textual
feature would be fed into the DeepFM module for metadata fusion.

of question, Wqa is a trainable matrix. U ∈ R|q|×|a| is the
weighted matrix by calculating similarity of each question
token to answer token.

In this way, each word in the answer is represented based
on the related words in the question, indicating the reference
relationship. To measure the importance of each token in the
answer, we get an enhanced answer representation leveraging
a token-level attention mechanism:

γa = softmax (MLP (Xa))

X̃a = γa �Xa

(3)

where MLP(·) is a multilayer perceptron to encode the answer
feature, γa is the token-level attention weight matrix normalized
among all token-level linguistic representation of the answer
via a softmax function. We again utilize another attention
mechanism to improve the question representation on top of
the enhanced vectors:

γq = softmax
([
Xa, X

a
q

]
Wq + X̃aWa

)
X̃a

q = γq �Xa
q

(4)

where Wq and Wa are both trainable transformation matrices
to map the different embedding features into a common space,
[·, ·] means the concatenation for each position (token). We
accomplish the final reasoning step over the QA pair using
another Bi-LSTM to attain the interplay representation:

T qa = Bi-LSTMr
([
Xa, X̃

a
q

])
(5)

where T qa ∈ R|a|×d. We concatenate T qa along with
the representations of QA pair for each position (token)
and the resulting sequence is max-pooled to get the fi-
nal question-to-answer guided representation as T̄ qa =

max-pooling
([
T qa, Xa, X̃

a
q

])
.

C. Evidence Coherence Modeling

Previous literature has generally found that the truth of any
(true) proposition consists in its coherence with some specified
set of propositions [12]. This module (ECM) fully exploits

the reliability of evidence to enhance the coherence modeling
from trust and credibility perspectives [35] for debunking or
confirming the factuality in the answer. First of all, to prevent
off-topic coherence which deviates from the question‘s focus,
we represent each evidence si as Xq

si = f(Xsi , Xq), where the
function f(·) is a shorthand of Eq. 2.

Trust Cross-Checking. For measuring the trust that is the
relative likelihood for one evidence sentence being coher-
ent with another one, we utilize self-attention mechanism
to learn dependencies and semantics between any two ev-
idence sentences. We obtain the sentence-level representa-
tion X̄si for si by max-pooling the involved word vectors,
i.e., Xq

si . Therefore, we define the query, key and value
as {Q,K, V } = {X̄S · WQ, X̄S · WK , X̄S · WV }, where
X̄S =

[
X̄s1 , . . . , X̄sn

]> ∈ Rn×d denotes the representations
of all evidence sentences, {WQ,WK ,WV } ∈ Rd×dk are
trainable weights. Then, attention functions are applied to
generate the output states:

O = softmax

(
QK>√
dk

)
V (6)

In consistent with the setting of standard transformer
encoder [36], we conduct multi-head self-attention and con-
catenate the vectors to generate the final output, followed by
a normalization layer to represent all evidence sentences as
Ō =

[
Ō1, Ō2, . . . , Ōn

]
∈ Rn×d.

Credibility Ranking. The credibility targets to measure the
consistency of each evidence sentence regarding the entire
set as a whole. We assume that the conflicting and entailed
semantics between answer and evidence could respectively
contribute to discovering false and true answers. Inspired by
the gate mechanism [37], we propose a gate-induced decoupling
mechanism to identify the features of conflicting and entailed
text snippets as follows:

disi = sigmoid
([
X̄a, X̄si

]
Wd

)
simi = sigmoid

([
X̄a, X̄si

]
Ws

) (7)

where disi is the discrepancy gate, simi is the similarity gate,
and X̄a is the sentence-level representation of the answer a by
max-pooling word vectors obtained from f(Xa, Xq). On top
of the gates, we obtain the features of conflicting and entailed
text snippets from each answer-evidence pair as:

fdi = tanh
([
disi � X̄a, (1− disi)� X̄si

]
Wc

)
fsi = tanh

([
simi � X̄a, simi � X̄si

]
Wr

) (8)

where W∗ in Eq. 7-8 are trainable parameters. Based on the
decoupling features of conflict and entailment, i.e., fdi and fsi ,
we generate a probability for each si indicating the coherence
with the answer:

αi = tanh
([
fdi , f

s
i

]
Wg

)
βi =

exp(αi)∑
i exp(αi)

(9)

where Wg is a parameter turning the gate-induced decoupling
features to a credibility score αi. We omit the bias to avoid
notation clutter. βi is the normalized credibility weight of
si towards the answer. To highlight informative evidence
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for the answer verdict, we apply the normalized weights
β = [β1, ..., βn] over the middle evidence representations Ō to
produce the weighted evidence representations: T eqa = β � Ō.
Then it would be passed through a feed-forward and a
normalization layer to get the final evidence representations
T eqa ∈ Rn×d. Here we employ max-pooling to jointly capture
the coherent opinions expressed in the whole evidence as
T̄ eqa = max-pooling (T eqa).

D. Metadata Fusion

Apart from the textual features, we assume the metadata
field (e.g., question/answer time, product domain, and answer
text length) implicitly improve the answer veracity prediction.
Intuitively, the truthful answers in E-commerce are usually
generated by the users who are familiar with the product,
obtained from metadata such as question/answer time [1] and
different product domains [23]. The core idea is to capture the
hidden correlations among the metadata features, which are
generally difficult to be clearly defined and hand-crafted (e.g.,
the classic association rules “diapers and beer” [38] is mined
from the data, instead of pre-defined by experts). Inspired
by [16], we utilize a DeepFM module to learn both low- and
high-order features from the metadata which consists of two
components, i.e., factorization machine (FM) and deep neural
network (DNN). We first input each field mi ∈ M into a
sparse input layer and embed sparse original features into a
low-dimensional embedding Vi. The FM part calculates the
dot product of each pair of features to capture the hidden
correlations:

ZFM =

N∑
i=1

N∑
j=i+1

〈Vi, Vj〉mi ·mj (10)

where N means the total number of metadata fields for
each instance C. The DNN part obtains the high-order feature
interactions through an MLP layer:

ZDNN = MLP ([V1, V2, ..., VN ]) (11)
Then we get the features from metadata:ZDeepFM =

[ZFM , ZDNN ], to combine the low-order features with high-
order features, which are complementary due to the shared
embeddings.

E. The Overall Model

For our base model AMIF-Base, we integrate T̄ qa with T̄ eqa

to predict the probability distribution over the veracity classes:
Z = MLP

([
T̄ qa, T̄ eqa

])
p = softmax(Z)

(12)

where p is a low-dimensional vector for answer veracity
prediction.

To integrate the metadata for AMIF-DeepFM, we employ
a fusion strategy with adaptive adjustability. For conciseness,
the low-dimensional veracity prediction vector is obtained with
the final fusion for the multiple relevant features as:

p = softmax (MLP ([λZ, (1− λ)ZDeepFM ])) (13)
where λ ∈ (0, 1) is the trade-off coefficient randomly

initialized.

TABLE III
SUMMARY STATISTICS OF THE ANSWERFACT DATASET

Electronics Home Sports Health Phones Total

# Answers per Label
TRUE 13,054 10,592 4,539 6,879 2,467 37,531
PARTTRUE 1,737 1,297 581 1,035 336 4,986
UNSURE 3,116 2,228 1,134 1,782 738 8,998
PARTFALSE 822 683 308 564 151 2,528
FALSE 2,491 1,797 897 1,211 415 6,821

#Answers 21,220 16,597 7,459 11,481 4,107 60,864
#Questions 11,554 8,210 3,918 5,816 2,245 31,743

During training, we exploit the cross-entropy loss over
training data with the L2-norm. Since the focus in this paper
is primarily on better fusion strategy on multiple features from
the question, answer, and supporting evidence plus metadata
to improve the FC-QA task, we represent input words using
GloVe word embeddings [39]. We set hidden dimension d to
256, head number H to 8, evidence sentences number n to
5. Parameters are updated through back-propagation [40] with
the AdamW optimizer [41]. The learning rate is initialized as
0.01, and the dropout rate is 0.2. Early stopping [42] is applied
to avoid overfitting.

IV. EXPERIMENTS

A. Dataset

We carry out extensive experiments on AnswerFact [11]
benchmark, the representative dataset for FC-QA task so
far*, with 60,864 QA pairs in total. We consider the label
settings from two perspectives: 1) Finer-grained labels: TRUE,
PARTTRUE, UNSURE, PARTFALSE and FALSE, which lead to a
more challenging classification problem [29]; 2) Following [34],
we merge PARTTRUE, UNSURE and PARTFALSE into MIXED,
resulting of a more practical classification on AnswerFact, i.e.,
TRUE, FALSE and MIXED. The dataset is challenging because
of the QA-claim setting, multiple product domains and product-
related auxiliary information to be exploited. The statistics of
the dataset are shown in Table III.

B. Experimental Setup

We compare our proposed model with the following baseline
and state-of-the-art models: 1) CNN-claim and 2) LSTM-
claim: The CNN-based detection model [30] and LSTM-
based RNN model for representation learning from word
sequences [29], respectively, both using only claim content
without considering external resources; 3) DeClarE: The
evidence-based fact-checking model [8] with word-level neural
attention to capture world-level evidence from relevant articles;
4) NSMN: A pipeline method [9] based on Neural Semantic
Matching Network (NSMN), which ranked first in the FEVER
shared task [43]. Its single-text claim verification module is
used here for our task as one of the representative baselines.
5) MultiFC: A joint model for evidence ranking and veracity
prediction conduted by [10]. 6) AVER: the state-of-the-art

*We didn’t evaluate the SemEval-2019 Task 8 [7] due to its limited training
data with only 495 QA pairs.
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TABLE IV
RESULTS OF ANSWER VERACITY PREDICTION ON ANSWERFACT. FTRUE , FMIXED AND FFALSE DENOTE THE F1 SCORES OF THE THREE CLASSES.

3-CLASS 5-CLASS
Model Mac-F1 Mic-F1 FTRUE FMIXED FFALSE Mac-F1 Mic-F1

CNN-claim 0.442 0.648 0.791 0.144 0.390 0.249 0.649
LSTM-claim 0.492 0.649 0.785 0.302 0.390 0.253 0.653

DeClarE 0.450 0.635 0.785 0.153 0.413 0.243 0.635
NSMN 0.504 0.663 0.799 0.284 0.429 0.279 0.651
MultiFC 0.513 0.655 0.787 0.300 0.453 0.299 0.655
AVER 0.534 0.673 0.802 0.314 0.486 0.330 0.665
AVER∗ 0.515 0.660 0.790 0.322 0.427 0.306 0.650

AMIF-Base 0.548 0.678 0.802 0.352 0.493 0.342 0.666
AMIF-DeepFM 0.551 0.705 0.817 0.353 0.482 0.340 0.672

TABLE V
ABLATION STUDIES ON OUR PROPOSED MODEL.

Model 3-CLASS 5-CLASS

Mac-F1 Mic-F1 Mac-F1 Mic-F1

AMIF 0.551 0.705 0.340 0.672

QARC+ECM(w/o DeepFM) 0.548 0.678 0.342 0.666
QARC+DeepFM(w/o ECM) 0.538 0.658 0.324 0.663
Vanilla QA+ECM+DeepFM 0.543 0.674 0.336 0.665
Vanilla QA+ECM 0.538 0.667 0.334 0.664
Vanilla QA 0.505 0.618 0.257 0.631

TABLE VI
COMPARISON OF DIFFERENT PARTS IN ECM.

Model 3-CLASS 5-CLASS

Mac-F1 Mic-F1 Mac-F1 Mic-F1

AMIF 0.551 0.705 0.340 0.672

w/o discrepancy 0.543 0.671 0.333 0.670
w/o similarity 0.545 0.679 0.336 0.674
w/o decoupling 0.540 0.665 0.326 0.669
w/o self-attention 0.548 0.678 0.328 0.667

neural model for fact checking in QA settings [11] with a
tailored evidence ranking module.

For our proposed model AMIF, we consider the following
two variants: AMIF-Base: without DeepFM module. AMIF-
DeepFM: with DeepFM module involved.

C. Implementation Details

As known, BERT [44] is not a ready-to-use model to
generate embeddings in its original form for specific tasks
on E-commerce CQA platforms, so it is rather a model that
can be tuned for a task. However, considering the relatively
small scale of the benchmark dataset for FC-QA task (60,864
QA pairs in total where a lot of identical questions are
paired with different answers), we represent input words
using 300-dim pre-trained GloVe [39] Wikipedia 6B word
embeddings widely used in the state-of-the-art baselines, for a
fair comparison. We hold out 10% of the datasets for tuning

the hyperparameters and conduct 10-fold cross-validation on
the rest of the datasets. We use micro-/macro-averaged F1,
class-specific F-measure as evaluation metrics, where macro-
averaged F1 can capture competitive performance beyond the
majority class for AnswerFact owing to the imbalanced class
prevalence. We implement our model with pytorch.

D. Answer Truthfulness Prediction

Table IV demonstrates the performance of all the compared
methods respectively based on two label settings of the
benchmark. As AVER is not yet open-source, we post both
the results referred from AVER and those implemented by
ourselves (*). It is observed that the performances of the
baselines in the first group only relying on claim text are
obviously poor. Since the inductive bias of most existing
claim verification models could prefer single-text claims to
QA-setting claims, they largely ignored or oversimplified the
feature interactions between the question context and evidence
sentences, whose application in this real-world E-commerce
scenario remains to be explored. We just compared DeClareE,
NSMN and MultiFC because they are all classical and effective
representative of single-text claim verification modules that can
be applied to this answer truthfulness prediction task flexibly,
though not designed for this question-aware task. AVER
performs best among all evidence-based models in the second
group because it utilizes the shallow features from QA text to
guide the interpolation of the evidence sentences instead of the
single-text claim used in the other methods. However, AMIF-
Base can already achieve better results compared with other
baselines, which demonstrates the effectiveness of considering
the fine-granularity understanding between QA pairs and the
necessity of modeling coherence of evidence from both trust
and credibility perspectives. We can also notice that our
proposed AMIF-DeepFM consistently outperforms all baselines
and further improves the prediction performance of AMIF-Base
in general, suggesting that equipping the network with features
from metadata in E-commerce can provide positive guidance
for more accurate truthfulness predictions.
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E. Ablation Study

We perform ablation studies by discarding some important
components of AMIF. As demonstrated in Table V, the models
suffer different degrees of such performance degradation by
discarding some important components of AMIF, indicating the
effectiveness of our proposed components for predicting the
veracity of answers. AMIF makes mild improvements over our
base model discarding the DeepFM module (QARC+ECM),
reflecting the promoting role of DeepFM for fact checking
in CQA forums, which excavates appropriate low- and high-
order interactions from raw features. Neglecting the evidence
coherence modeling (QARC+DeepFM) also leads to perfor-
mance degradation, which implies exploring the coherence
of evidence from trust and credibility perspectives enables
our model hardly compromised when not all evidence is
reliable and contributes to the final answer veracity prediction
performance. We also replace the QA reasoning calibration
component with the naive QA representation used in AVER [11]
and it (Vanilla QA+ECM+DeepFM) results in performance
degradation on both label settings, since the performance may
suffer from limited context information of answers caused by
the insufficient understanding over the interplay of QA pairs.
Substituting the evidence ranking module in AVER by our
ECM (Vanilla QA+ECM) still achieves superior performance,
which reaffirms the strengths of the ECM component.

For details in ECM, we also conduct an ablation study
as shown in Table VI. We can observe that ablating any
part of ECM could decrease the performance, which further
confirms the effectiveness of the self-attention and gate-induced
decoupling mechanisms in ECM. An interesting point is that our
model without discrepancy gate obtains an inferior performance
compared with that without similarity gate. For that, we
investigate the importance of discrepancy and similarity gates
to the final prediction in the following subsection.

F. Analysis of Gate-induced Decoupling

We design an experiment to make deeper analysis on the
importance of differential and consistent features inherent in
semantic correlation decoupled from the holistic context by
discrepancy and similarity gates, respectively. Figure 4 shows
Macro-averaged F1 scores of two test sets we choose to verify
the impact of our proposed gate-induced decoupling. We choose
two sets of test samples from the whole original test set: the
test samples with TRUE label and PARTTRUE label are merged
into one set, and those with FALSE label and PARTFALSE
label are merged into another set. We can observe that ablating
similarity or discrepancy gate could decrease the performance.
Combining them makes further improvements and implies
their complementary. However, the model without similarity
gate achieves a little worse performance on the positive test
set with fact (TRUE+PARTTRUE) compared with the model
without discrepancy gate. We conjecture that the reason why the
difference is not obvious is that the proportion of answers with
fact (TRUE+PARTTRUE) in the training set is much larger than
that with misinformation (FALSE + PARTFALSE), so the variant
models tend to fit the positive training data in the training
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w/o similarity

AMIF

Mac-F1
False+PartFalse True+PartTrue

Fig. 4. Comparison between discrepancy and similarity gates of gate-induced
decoupling mechanism.

Question: Do I have to buy a memory card for
this camera, or does it already come with one?
Answer: It comes with one.           Verdict: [False]
Evidence:
s1: Please note that it does not come with a sd
card, I recommend buying one from SoCal Trade.
s2: The only thing that I did not realize when I
ordered, is that it did not come with a memory
card.
s3: 濷

Q-A similarity

Fig. 5. Example of correctly predicted false answers.

process, resulting in performance on the test data can not
reflect a significant difference. Nevertheless, the model without
discrepancy gate leads to a relatively large margin performance
degradation on the negative test set (FALSE+PARTFALSE)
compared with the model without similarity gate, which
explicitly explains that it is effective to disentangle the semantic
conflicts between the answer and evidence for the identification
of the answer with misinformation, to which discrepancy gate
contributes more compared with similarity gate.

G. Case study

One key advantage of our model is that we could retrieve
both token-level and sentence-level explanations for our pre-
dictions, as presented in Figure 5. In the simple example, one
interesting phenomenon is that the question contains two sub-
questions. However, our model can provide powerful clues that
the answer targets the second sub-question through reasoning
over the heatmap of the QA similarity after proper fine-
grained semantic calibration between QA pairs, which includes
resolving the referent ‘it’, ‘one’ and understanding which
salient units in the question should be taken into account. Also,
drawing on the practice of [45], we top the indicative evidence
sentences based on the comprehensive consideration of both
self-attention weights and credibility scores. The efficient FC-
QA model hinges on the reliability and helpfulness of the
answer [1], [23], and explanations (e.g., coherent opinions) can
strengthen this by communicating fidelity in predictive models
and assist users for better understanding the predictions.

V. CONCLUSION

We propose a novel attention-based hybrid deep framework
AMIF to predict the answer truthfulness for community
question answering in E-commerce, which not only supports
fine-grained semantic reasoning calibration between QA pairs
but also models the opinion coherence between the answer
and evidence from trust and credibility perspectives. Moreover,
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features in metadata that describe E-commerce QA are incorpo-
rated for better prediction. Extensive experiments show that our
model achieves superior and explainable performance on the
task of fact checking for question answering in E-commerce. In
our future work, we plan to dive into the research for applying
more single-text claim verification models to our FC-QA task.
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