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A B S T R A C T

The truth is significantly hampered by massive rumors that spread along with breaking news or popular
topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor
detection algorithms show promising performance on yesterday’s news. However, due to a lack of substantial
training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events,
especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a
simple yet effective framework with unified contrastive transfer learning, to detect rumors by adapting the
features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations.
More specifically, we first represent rumor circulated on social media as an undirected topology for enhancing
the interaction of user opinions, and then train the propagation-structured model via a unified contrastive
paradigm to mine effective clues simultaneously from both post semantics and propagation structure. Our
model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a
novel domain-adaptive contrastive learning mechanism. To well-generalize the representation learning using
a small set of annotated target events, we reveal that rumor-indicative signal is closely correlated with the
uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with
three event-level data augmentation strategies, capable of unifying the representations by distinguishing target
events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog
platforms demonstrate that our framework achieves much better performance than state-of-the-art methods
and exhibits a superior capacity for detecting rumors at early stages.
1. Introduction

Rumor amid breaking news spreads like wildfire on social media,
causing widespread confusion, fear, and distrust among individuals and
society. However, rumor detection can be particularly challenging in
low-resourced domains or languages due to the availability of domain
expertise, nuances of language, cultural differences, etc. Taking the
healthcare domain as an example, during the outbreak of COVID-19, a
false rumor claimed ‘‘the vaccine has a chip in it which will control your
mind’’.2 The rumor was translated into various languages, enabling it to
spread in different regions worldwide, including those with low levels
of vaccine uptake or hesitant attitudes towards vaccination like Arabic,
India, and other Muslim countries. Despite recent efforts to collect
microblog posts related to COVID-19 [1–3], existing rumor detection
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methods are vulnerable to detecting such low-resource rumors without
a substantial and suitable training corpus [4]. Therefore, to mitigate
their harmful effects, it is crucial to develop robust methods to detect
rumors in low-resource languages and domains during emerging news
events.

A rumor is defined in social psychology literature as a narrative
or a statement whose truth value is unconfirmed or intentionally un-
true [5]. Recently, deep neural network (DNN) techniques [6–9] have
shown considerable promise in recognizing rumors on microblogging
services by extracting features indicative of rumors from a large corpus
of labeled rumor data. Nevertheless, such DNN-based techniques are
completely data-driven and have a significant drawback in detect-
ing emergent events in low-resource domains, namely, the distinct
subject coverage and word distribution [10] required for detecting
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Fig. 1. A toy example to illustrate the gap between source data (blue) and target data (red). The rumor detection model trained on the source data may not adapt well to the
target. This discrepancy becomes evident through increased error rates when directly inferring samples from the target data using the model pre-trained on the source data.
Fig. 2. Word clouds of rumor and non-rumor data generated from TWITTER, English-COVID19 (EngCovid), and Chinese-COVID19 (ChiCovid) datasets, where the size of terms
corresponds to the word frequency. Both TWITTER and English-COVID19 are presented in English while Chinese-COVID19 in Chinese.
low-resource rumors are frequently not covered by the public bench-
marks [11–13]. Existing monolingual techniques, on the other hand,
are inapplicable for rumors disseminated in various languages due to
the lack of sufficient open-domain data in the target language, which is
necessary for effective monolingual model training. As exemplified in
Fig. 1, the rumor detection model is initially trained on a source domain
comprising English-language training samples. However, when con-
fronted with newly emergent data that differs substantially in domain
and/or language from the source, the model trained on this source data
exhibits diminished performance within the target domain. Directly
training the detection model on the source data and evaluating its
performance in the newly emergent domain often yields unsatisfactory
results.
2

In this study, we assume that establishing close correlations be-
tween well-resourced and low-resourced rumor data can help overcome
domain and language barriers, thereby improving low-resource ru-
mor detection within a more comprehensive framework. To illustrate
our intuition, we collect rumorous and non-rumorous claims corre-
sponding to COVID-19 with propagation threads from Twitter and
Sina Weibo which are two popular social websites in English-spoken
and Chinese-spoken communities, respectively. Fig. 2 illustrates the
word clouds of rumor and non-rumor data from an open domain
benchmark (i.e., TWITTER [13]) and two COVID-19 datasets [14]
(i.e., English-COVID19 and Chinese-COVID19). It can be seen that
both TWITTER and English-COVID19 contain denial opinions towards
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Fig. 3. The illustration of Alignment and Uniformity of features in source data (blue) and target data (red) on a hypersphere. The alignment dedicates identical rumor-indicative
features from different domains closer, while the uniformity could help preserve maximal information of the features from target rumor data to capture nontrivial but more
discriminative patterns for better generalization.
rumors, e.g., ‘‘fake’’, ‘‘joke’’, ‘‘stupid’’ in Fig. 2(a) and ‘‘wrong symp-
tom’’, ‘‘exactly sick’’, ‘‘health panic’’ in Fig. 2(b). In contrast, support-
ive opinions towards non-rumors can be drawn from Figs. 2(d)–2(e).
Moreover, considering that COVID-19 is a global disease, massive
misinformation could be widely propagated in different languages such
as Arabic [15], Indic [16], English [17] and Chinese [18]. Similar
identical patterns can be observed in Chinese on Sina Weibo from
Figs. 2(c) and 2(f). Despite the prevalence of domain-specific expertise
jargon and language-related colloquialisms in COVID-19 data on social
media, we contend that aligning the representation space of identical
rumor-indicative patterns across various domains and/or languages can
facilitate the adaptation of features extracted from well-resourced data
to those of low-resourced data. Moreover, since rumor propagation
generally reveals significant insight into how a claim is responded to
by users irrespective of specific domains [6,19], we aim to develop an
innovative domain and/or language transfer framework that is aware
of such a structural social context.

To this end, inspired by contrastive learning [20–22], we proposed
a domain-Adaptive Contrastive Learning approach for low-resource
rumor detection, to encourage effective alignment of rumor-indicative
features in the well-resourced and low-resource data. More specifically,
we first transform each microblog post into a language-independent
vector by semantically aligning the source and target language in a
shared vector space. As the diffusion of rumors generally follows a
propagation structure that provides valuable domain-invariant clues
on how a claim is transmitted, we present the conversation prop-
agation thread as an undirected topology, which allows full-duplex
interactions between posts with responsive relationships so that the
domain-invariant structural features can be fully aggregated and the
interplay of user viewpoints can be enhanced. Thus we resort to a multi-
scale Graph Convolutional mechanism to catch informative patterns
fused from both claim semantics and event structure. Then, we propose
a novel domain-adaptive contrastive learning paradigm to minimize the
intra-class variance of source and target instances with same veracity,
and maximize inter-class variance of instances with different veracity.

Previous literature reveals that two properties: (1) alignment and
(2) uniformity on the unit hypersphere [23], are of great importance
for representation learning in terms of contrastive paradigm. However,
a problem of our domain-adaptive contrastive learning framework pro-
posed in [14] is that it primarily emphasizes the alignment of different
domains and/or languages, while largely disregarding the uniformity of
target feature space that preserves distinctive rumor-indicative signals
among target training samples [24]. The inductive bias of such an
3

alignment-only paradigm could cause the representation degeneration
issue [25] and limit the capacity of generalization to unlabeled low-
resource rumor data. Fig. 3 illustrates the alignment between the source
rumor data in open domains and a small amount of labeled target data
in COVID-19 domain, and the ideal uniformity of target representation
learning. The domain-adaptive contrastive learning can align the target
rumor data containing target-specific patterns like ‘‘medical cover-up’’
or ‘‘biology hoax’’, with the well-resourced data containing general
rumor-indicative patterns like ‘‘not true’’ or ‘‘it’s stupid’’. So that almost
all the few-shot target rumor data with the same veracity are shrinking
towards the source data and thus degenerating into a narrow and
anisotropic feature space, which however suppresses the uniformity
of target representation learning. Generally, the more uniform the
distribution of the small labeled target data, the more rumor-indicative
information is retained, which can lead to better generalization to more
target low-resource data [24]. As exemplified in Fig. 3, with an evenly
distributed representation on the unit hypersphere [26], the target vec-
tor space is able to preserve enough discriminative information related
to medicine or biology for each sample, which can be well-generalized
on detecting COVID-19 rumors with nontrivial domain-specific patterns
like ‘‘just flu’’ or ‘‘it’s bioweapon’’.

In this work, we present a pioneering unified contrastive transfer
framework that integrates a novel approach known as target-wise con-
trastive learning to augment our foundational domain-adaptive model,
specifically tailored for low-resource rumor detection. The core objec-
tive of target-wise contrastive learning is to significantly enhance the
generalization capability, particularly targeting the more intricate and
challenging events within the target domain. Specifically, the incorpo-
ration of target-wise contrastive learning within our framework serves
the purpose of unifying and refining the representations derived from
limited samples in the target domain. By leveraging this technique, we
aim to homogenize the few-shot target representations, thus enabling
the model to glean more nuanced and discriminative features from the
scarce labeled data available in the target domain. This enhancement
is pivotal in bolstering the model’s ability to discern and effectively
detect rumors in scenarios where labeled data is notably scarce, thereby
improving its performance on challenging target events.

Meanwhile, in target-wise contrastive learning, data augmentation
is a crucial aspect as it enables the creation of new positive and
negative pairs from a small amount of labeled target data. This in-
creases the amount and diversity of target training data, improving
the performance of detecting more challenging low-resource rumors.
Therefore, we explore three event-level data augmentation strategies
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for target low-resource data (i.e., Adversarial Attack [27,28], Feature
Dropout [29], and Graph Dropedge [30]) to effectively obtain pseudo
diverse views of a target event in the latent space for the target-wise
contrastive learning.

As there is no public benchmark available for detecting low-resource
rumors with conversation threads, we collected the propagation struc-
ture for four rumor datasets corresponding to COVID-19 from so-
cial media in Mandarin, English, Cantonese and Arabic languages.
We also instantiate our proposed unified contrastive transfer frame-
work on three strong structure-based baseline methods that model the
propagation thread of rumors.

Extensive experiments conducted on four real-world low-resource
datasets confirm that (1) our model yields outstanding performances
for detecting low-resource rumors over the state-of-the-art baselines
with a large margin; (2) the unified contrastive transfer framework is
more effective in contrastive representation learning for uniformity of
target data distribution; and (3) our method performs particularly well
on early rumor detection which is crucial for timely intervention and
debunking especially for breaking events.

The main contributions of this paper are four-fold:

• To the best of our knowledge, we are the first to study ru-
mor detection on social media from a fresh perspective of the
low-resource regime, by presenting a novel simple yet effec-
tive framework via unified contrastive transfer integrated with
propagation structure.

• We propose a contrastive learning framework for structural fea-
ture adaption between different domains and languages, which
model domain-invariant similarities based on undirected propa-
gation topology by pulling together events of the same veracity
while pushing apart events of different veracity.

• Based on the domain-adaptive model previously proposed in our
recent work [14], we further design a distinctive target-wise
contrastive learning mechanism accompanied by three innova-
tive event-level data augmentation strategies. These strategies
converge to homogenize distributed event-level representations
specifically tailored for target events, which enables our rumor
detection model to discern and harness target-specific rumor
signals.

• We collect four low-resource rumor benchmarks corresponding
to COVID-19 domain with conversation threads, respectively rep-
resented in Chinese, English, Cantonese and Arabic languages.
Experimental results on the four real-world benchmarks show that
our model achieves superior performance for both rumor classifi-
cation and early detection tasks under low-resource settings.

2. Related work

2.1. Sequence-based rumor detection

Initial research efforts in the field of automated rumor detection
have primarily concentrated on developing supervised classifiers that
leverage specifically designed features extracted from the content of
posts, user profiles, and dissemination trends [31–33]. Subsequent
research has introduced novel characteristics, including those that rep-
resent the dissemination and cascading effects of rumors [34–36]. [37]
streamlined the engineering effort by employing a series of regular ex-
pressions to efficiently identify questioning and negating tweets. DNN-
based models, including recurrent neural networks (RNNs) [12], convo-
lutional neural networks (CNNs) [38], and attention mechanisms [39],
are widely utilized to extract features from the continuous flow of social
media content. Despite their efficacy, these techniques primarily treat
the post structure as a linear sequence, oversimplifying the intricate
4

propagation patterns inherent in social media interactions.
2.2. Structure-based rumor detection

To jointly derive valuable insights from content semantics and prop-
agation structures, certain methodologies suggested employing kernel-
learning models [13,40] for comparing different propagation trees.
By utilizing tree-structured recursive neural networks (RvNN) [6] and
transformer-based models [41,42], these approaches aimed to generate
representations for individual posts within a propagation tree, guided
by the tree’s inherent structure. More recently, graph neural networks
(GNN) [7,43] have been increasingly utilized for encoding propaga-
tion threads, leading to more sophisticated representations. However,
these data-driven methodologies struggle to identify rumors in low-
resource environments [44,45], as they typically necessitate substantial
training data, which is often unavailable in less-researched domains or
languages. To address this limitation, we present a novel plug-and-play
framework designed to adapt pre-existing models by incorporating an
efficient propagation structure, enabling the detection of rumors across
diverse domains and/or languages.

2.3. Low-resource fact checking

To enable efficient fact-checking tasks in low-resource environ-
ments, domain adaptation techniques have been employed for fake
news detection [10,46–48]. These methods leverage multi-modal data,
such as text and images, to extract relevant features. In a related ef-
fort, [49] introduced a straightforward approach that utilizes perplexity
scores obtained from pre-trained language models (PLMs) for few-shot
fact-checking tasks. Our work, however, diverges from these multi-
modal data adaptations and PLM transfer learning strategies. Instead,
we concentrate on language and domain adaptation of structural fea-
tures to identify rumors within low-resource microblog posts related to
emerging events.

2.4. Applications of contrastive learning

Contrastive learning (CL) is designed to bolster representation learn-
ing by accentuating the concurrence between instances of the same
category while simultaneously differentiating them from instances be-
longing to dissimilar categories [23]. In recent years, CL has achieved
great success in unsupervised visual representation learning [20–22].
Besides computer vision, recent studies suggest that CL is promising in
the semantic textual similarity [50,51], stance detection [52], short text
clustering [53], unknown intent detection [54], and abstractive sum-
marization [55], etc. Nevertheless, the aforementioned CL frameworks
have been explicitly designed to enhance unstructured textual data,
such as sentences and documents. Unfortunately, these frameworks do
not adequately address the challenges posed by low-resource rumor
detection tasks, which necessitate considering not only claims but also
the intricate propagation patterns of community responses.

2.5. Contrastive learning for low-resource rumor detection

This work is a significant extension of the first supervised con-
trastive approach for low-resource rumor detection on social media
using a structure-based framework in our recent work [14]. Since
the publication of the conference version, several similar studies [56–
58] with domain-adaptive contrastive learning on the fact-checking
discipline have been conducted that build upon our findings. However,
these studies have just focused on aligning different domains, while
not adequately considering the distinctive informative features that
may exist between different target samples and exploring effective aug-
mentation strategies for structured data in the target-wise contrastive
paradigm.

Specifically, although the domain-adaptive contrastive learning ap-
proach effectively aligns diverse domains and languages, it may neglect

the crucial aspect of ensuring uniformity within the target feature
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Fig. 4. The overall architecture of our proposed framework. For source and small target training data, we first obtain post-level representations after cross-lingual sentence encoding,
then train the structure-based network (i.e., Multi-scale GCNs) with the proposed unified contrastive objective. For target test data, we extract the event-level representations to
detect rumors.
Fig. 5. The Multi-scale GCNs for propagation structure representations.
space. This oversight can lead to representation degradation, thereby
constraining the model’s ability to generalize effectively to unlabeled
low-resource rumor data. In response, this work introduces a pioneer-
ing unified contrastive transfer framework that integrates target-wise
contrastive learning. This augmentation of our foundational domain-
adaptive model aims to bolster low-resource rumor detection by ho-
mogenizing the feature space of scarce target training samples, thereby
enhancing their representation and generalization capabilities.

3. Problem statement

In the present study, we introduce the concept of low-resource
rumor detection as follows: Given a well-resourced dataset as a source,
the objective is to accurately categorize each event within a target
low-resource dataset as either a rumor or a non-rumor. It is essential
to note that the source and target datasets are derived from distinct
domains and/or languages, thereby more realistic and challenging to
the task. More specifically, a well-resourced source dataset for training
is defined as a set of events 𝑠 = {𝐶𝑠

1 , 𝐶
𝑠
2 ,… , 𝐶𝑠

𝑀}, where 𝑀 is the
number of source events. Each event 𝐶𝑠 = (𝑦, 𝑐,  (𝑐)) is a triplet rep-
resenting a given claim 𝑐 which is associated with a veracity label 𝑦 ∈
{rumor,non-rumor}, and ideally all its relevant responsive microblog
post in chronological order, i.e.,  (𝑐) = {𝑐, 𝑥𝑠1, 𝑥

𝑠
2,… , 𝑥𝑠

|𝐶|

},3 where |𝐶|

3 𝑐 is equivalent to 𝑥𝑠 .
5

0

is the number of responsive tweets in the conversation structure. For
the target dataset with low-resource domains and/or languages, a much
smaller dataset is considered for training 𝑡 = {𝐶 𝑡

1, 𝐶
𝑡
2,… , 𝐶 𝑡

𝑁}, where
𝑁(𝑁 ≪ 𝑀) is the number of target events and each 𝐶 𝑡 = (𝑦, 𝑐′,  (𝑐′))
has a similar composition structure to the source dataset.

We formulate the task of low-resource rumor detection as a su-
pervised classification problem that trains a domain/language-agnostic
classifier 𝑓 (⋅) adapting the features learned from source datasets to that
of the target events, that is, 𝑓 (𝐶 𝑡

|𝑠) → 𝑦. Note that although the tweets
are notated sequentially, there are connections among them based on
their responsive relationships [6].

4. Our approach

In this section, we present our unified contrastive transfer frame-
work with propagation structure to adapt the features extracted from
the well-resourced data to detect rumors from low-resource events,
which considers cross-lingual and cross-domain transfer. Figs. 4–5 show
an overview of our backbone model and training paradigm, which will
be depicted in the following subsections.

4.1. Cross-lingual sentence encoder

Given a post in an event that could be either from source or target
data, to map it into a shared semantic space where the source and target
languages are semantically aligned, we utilize XLM-RoBERTa [59]
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(XLM-R) to model the context interactions among tokens in the se-
quence for the sentence-level representation:

̄ = 𝑋𝐿𝑀 − 𝑅(𝑥), (1)

where 𝑥 is the original post, and we obtain the post-level representation
̄ using the output state of the ⟨𝑠⟩ token in XLM-R. We thus denote the
representation of posts in the source event 𝐶𝑠 and the target event 𝐶 𝑡 as
a matrix 𝑋𝑠 and 𝑋𝑡 respectively: 𝑋∗ = [�̄�∗0 , �̄�

∗
1 , �̄�

∗
2 ,… , �̄�∗

|𝑋∗
|−1]

⊤; ∗∈ {𝑠, 𝑡},
here 𝑋𝑠 ∈ R𝑚×𝑑 and 𝑋𝑡 ∈ R𝑛×𝑑 , 𝑑 is the dimension of the output state
f the sentence encoder.

.2. Propagation structure representation

On top of the sentence encoder, different from the directed tree
tructure modeling in previous work [6,7], we first represent the prop-
gation of each claim as an undirected propagation topology to explore
he full-duplex interaction patterns between responsive nodes with the
xpressive capacity of graph neural networks [60]. To fully utilize the
laim’s abundant information while preventing off-topic coherence that
trays from the claim’s main point in the propagation structure, as illus-
rated in Fig. 5, we exploit a simple but effective Multi-scale Graph Con-
olutional Network to integrate both the claim semantics and the social
ontext information for the subsequent contrastive training paradigm.

Given an event and its initialized embedding matrix 𝐶∗, 𝑋∗; ∗∈
𝑠, 𝑡}, We model the propagation thread of the event as an undirected
raph topology  = ⟨𝑉 ,𝐸⟩, where 𝑉 consists of the event claim and all
ts relevant responsive posts as nodes and 𝐸 refers to a set of undirected
dges corresponding to the response relation among the nodes in 𝑉 .
or example, for any 𝑥𝑖, 𝑥𝑗 ∈ 𝑉 , 𝑥𝑖 → 𝑥𝑗 and 𝑥𝑗 → 𝑥𝑖 exist if they have
esponsive relationships.

We transform the edge 𝐸 into a symmetric adjacency matrix 𝐀 ∈
0, 1}|𝑉 |×|𝑉 |, where 𝐀𝑖,𝑗 = 1 if 𝐱𝑖 has a responsive relationship with 𝐱𝑗
r 𝑖 = 𝑗, else 𝐀𝑖,𝑗 = 0. Then we utilize a layer-wise propagation rule to
pdate the node vector at the 𝑙th layer:

(𝑙+1) = ReLU
(

�̂� ⋅ �̃� (𝑙) ⋅𝑊 (𝑙)
)

, (2)

here �̂� = 𝐃−1∕2𝐀𝐃−1∕2 is the symmetric normalized adjacency
atrix, 𝐃 denotes the degree matrix of 𝐀. 𝑊 (𝑙) ∈ R𝑑(𝑙)×𝑑(𝑙+1) is a

ayer-specific trainable transformation matrix. In terms of �̃� (𝑙) =
ℎ̃(𝑙)0 , ℎ̃(𝑙)1 , ℎ̃(𝑙)2 ,… , ℎ̃(𝑙)

|𝑋∗
|−1]

⊤
, we employ a residual connection [61] around

ach graph convolutional layers for the multi-scale information fusion
rom both the claim-semantic scale and the event-structural scale, to
btain the refined representations:

̃ (𝑙) = LayerNorm
(

𝐻 (𝑙)∥ℎ(𝑙−1)0

)

, (3)

here ℎ(𝑙−1)0 ∈ R𝑑(𝑙−1) is the hidden representations of the claim at the
𝑙− 1)th layer, and ∥ is the concatenation operation with the broadcast
echanism. 𝐻 (0) and �̃� (0) are both initialized as 𝑋∗.

For the Multi-scale GCN model with 𝐿-layers, we obtain the final
ode representation �̃� (𝐿) and jointly capture the opinions expressed in
he propagation thread via mean-pooling:

= mean−pooling(�̃� (𝐿)), (4)

here 𝑜 ∈ R𝑑(𝐿) is the event-level structural representation of the entire
ropagation thread, 𝑑(𝐿) is the output dimension of GCN.

.3. Domain-adaptive contrastive training

In order to align the representation space of rumor-relevant cues
cross various domains and/or languages, we introduce an innovative
raining framework that leverages labeled data, encompassing abun-
ant source data and limited target data, to refine our model for
arget domains and languages. The key insight entails bringing the
6

m

epresentations of source and target events belonging to the same cate-
ory closer together, while maintaining a significant distance between
epresentations of different categories, as shown in Fig. 4.

Given an event 𝐶𝑠
𝑖 from the source data, we firstly obtain the

anguage-agnostic encoding for all the involved posts (see Eq. (1)) as
ell as the propagation structure representation 𝑜𝑠𝑖 (see Eq. (4)) which

s then fed into a softmax function to make rumor predictions. Then, we
earn to minimize the cross-entropy loss between the prediction and the
round-truth label 𝑦𝑠𝑖 :

𝑠
𝐶𝐸 = − 1

𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝑙𝑜𝑔(𝑝𝑖), (5)

where 𝑁𝑠 is the total number of source examples in the batch, 𝑝𝑖 is
the probability of correct prediction. To improve the discrimination
of rumor representation in source events, we propose a supervised
contrastive learning aim to cluster the same class and separate various
classes of samples:

𝑠
𝑆𝐶𝐿 = − 1

𝑁𝑠

𝑁𝑠
∑

𝑖=1

1
𝑁𝑦𝑠𝑖

− 1

𝑁𝑠
∑

𝑗=1
1[𝑖≠𝑗]1[𝑦𝑠𝑖=𝑦

𝑠
𝑗 ]

𝑙𝑜𝑔
𝑒𝑥𝑝(sim(𝑜𝑠𝑖 , 𝑜

𝑠
𝑗 ))

∑𝑁𝑠

𝑘=1 1[𝑖≠𝑘]𝑒𝑥𝑝(sim(𝑜𝑠𝑖 , 𝑜
𝑠
𝑘))

,

(6)

where 𝑁𝑦𝑠𝑖
is the number of source examples with the same label

𝑦𝑠𝑖 in the event 𝐶𝑠
𝑖 , and 1 is the indicator. sim(⋅) is the normalized

emperature-scaled cosine similarity function.
For an event 𝐶 𝑡

𝑖 from the target data, we also compute the classifi-
ation loss 𝑡

𝐶𝐸 in the same manner as Eq. (5). In our study, we aligned
oth source and target languages to a shared semantic domain through
entence encoding. However, effective rumor detection depends not
nly on post-level lingual attributes but also on event-level context. In
he absence of constraints, the structure-based network solely extracts
vent-level features from all samples according to their ultimate classifi-
ation indicators. Nonetheless, these features might not hold significant
elevance to the target domain and/or language. We make full use of
he minor labels in the low-resource rumor data by parameterizing our
odel according to the contrastive objective between the source and

arget instances in the event-level representation space:

𝑡
𝑆𝐶𝐿 = − 1

𝑁 𝑡

𝑁 𝑡
∑

𝑖=1

1
𝑁𝑦𝑡𝑖

𝑁𝑠
∑

𝑗=1
1[𝑦𝑡𝑖=𝑦

𝑠
𝑗 ]

𝑙𝑜𝑔
𝑒𝑥𝑝(sim(𝑜𝑡𝑖, 𝑜

𝑠
𝑗 ))

∑𝑁𝑠

𝑘=1 𝑒𝑥𝑝(sim(𝑜𝑡𝑖, 𝑜
𝑠
𝑘))

,

(7)

where 𝑁 𝑡 is the total number of target examples in the batch and 𝑁𝑦𝑡𝑖
is

he number of source examples with the same label 𝑦𝑡𝑖 in the event 𝐶 𝑡
𝑖 .

s a result, we project the source and target samples belonging to the
ame class closer than that of different categories, for feature alignment
ith minor annotation at the target domain and language.

.4. Target-wise contrastive training

A critical defect of the domain-adaptive contrastive training is that
lmost all the target instances with the same veracity are mapped
nto a small projection space by simply maximizing inter-class variance
nd minimizing intra-class variance. Therefore, when there is a limited
mount of labeled target samples, the structure-derived event-level rep-
esentations could be somehow collapsed [62] and less discriminative
o identify individual target samples. For instance, in the context of the
OVID-19 domain, the learned rumor-indicative features for target low-
esource data could just converge to the general patterns like ‘‘not true’’
r ‘‘joke’’ in well-resourced data of open domains, which may fail to
etect unlabeled COVID-19 data with unseen domain-specific patterns
ike ‘‘just flu’’ or ‘‘it’s bioweapon’’ - Denial opinions towards rumors that

inimize the severity of COVID-19 or be fueled by conspiracy theories.
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Thus it’s important to make the target representation evenly distributed
and discriminative with each other for more representative feature
learning. To this end, we further exploit a target-wise contrastive learn-
ing to distinguish individual targets on top of the alignment between
groups of samples with different veracity classes, which reinforces it to
preserve maximal rumor-indicative information of the target events.

Given the event-level structural representation of a target sample
𝑜𝑡𝑖, we perform the target-wise contrastive objective based on the aug-
mented event-level target data. As 𝑁 𝑡 events are randomly selected
from 𝐷𝑡 during each training stage to create a mini-batch, we first aug-
ment each target event to construct a pair of positive samples, leading
to 2𝑁 𝑡 event-level representations. To differentiate from other target
samples, each target data sample is taught to identify its corresponding
augmented sample from a batch of 2(𝑁 𝑡 − 1) negative samples:

𝑡
𝑇𝐶𝐿 = − 1

𝑁 𝑡

𝑁 𝑡
∑

𝑖=1
𝑙𝑜𝑔

𝑒𝑥𝑝(sim(𝑜𝑡𝑖, 𝑜
𝑡
𝑖))

∑𝑁 𝑡

𝑘=1 1[𝑖≠𝑘]
(

𝑒𝑥𝑝(sim(𝑜𝑡𝑖, 𝑜
𝑡
𝑘)) + 𝑒𝑥𝑝(sim(𝑜𝑡𝑖, 𝑜

𝑡
𝑘))

)

, (8)

where 𝑜𝑡𝑖 denotes the augmented event-level target representation of 𝑜𝑡𝑖,
hich is generated with the data augmentation strategies that would be
epicted in the following subsection. In summary, as shown in Fig. 4,
he target-wise contrastive objective focuses on distinguishing differ-
nt target events for uniformly distributed event-level representations,
nd meanwhile the domain-adaptive contrastive objective identifies
istinct rumor veracity from different domains and/or languages. As
result, the representations can be further enhanced by capturing
ore target-specific informative signals and well-generalized on diverse

ow-resource breaking events.

.5. Data augmentation strategies

Data augmentation techniques were successfully utilized to en-
ance contrastive learning models [21], which involve creating differ-
nt views or perspectives of the same data to be used as positive pairs in
he target-wise contrastive learning process. In this study, we consider
ata augmentation from two perspectives: the encoding of the event-
evel representations and the modeling of the propagation structure.
hus we investigate three data augmentation techniques. The first two
trategies (i.e., Adversarial Attack [27,28] and Feature Dropout [29])
re utilized to encode the event-level representations in our framework,
hich are widely utilized in recent studies [50,51]. To model the in-
erent complexity and dynamic nature of rumor dissemination [63], we
ttempt to augment data based on the propagation structure of target
vents by masking some sampling edges in the undirected propagation
tructure as shown in the third strategy.
Adversarial Attack. Adversarial training is commonly used to im-

rove the robustness of a model. To create an adversarial example,
e apply Fast Gradient Value [64] to approximate a worst-case per-

urbation at the event-level representations, where the gradient is
ormalized to represent the direction that significantly decreases the
odel’s prediction performance. Then we obtain the pseudo adversarial

ample by adding the perturbation to the event-level representations.
Feature Dropout. Dropout is a widely used regularization method

hat avoids overfitting. However, in this work, we also show its effec-
iveness as an augmentation strategy of event-level representations for
ontrastive learning. For this setting, we randomly drop elements in the
vent-level representations by a specific probability and set their values
o zero.
Graph Dropedge. Different from Adversarial Attack and Feature

ropout directly applied to the encoding of event-level representations,
e further explore an augmentation strategy based on the propagation

tructure. In particular, we randomly remove edges from the input
ndirected graphs throughout each training period to produce the
eformed copies by a specific probability, which then be input into
he structure-based network, i.e., Multi-scale GCNs, for the augmented
7

vent-level representations.
Algorithm 1 Unified Contrastive Learning
Require: A small set of events 𝐶 𝑡

𝑖 in the target domain and language; A set
of events 𝐶𝑠

𝑖 in the source domain and language.
nsure: Assign rumor labels 𝑦 to given unlabeled target data.
1: for each mini-batch 𝑁 𝑡 of the target events 𝐶 𝑡

𝑖 do:
2: for each mini-batch 𝑁𝑠 of the source events 𝐶𝑠

𝑖 do:
3: Pass 𝐶∗

𝑖 to the sentence encoder and then structure-based network to
obtain its event-level feature 𝑜∗𝑖 , where ∗∈ {𝑠, 𝑡}.

4: Compute the classification loss ∗
𝐶𝐸 for source and target data,

respectively.
5: Data augmentation for target data to compute the target-wise

contrastive loss 𝑡
𝑇𝐶𝐿 and update 𝑡

𝐶𝐸 .
6: Compute the domain-adaptive contrastive loss ∗

𝑆𝐶𝐿.
7: Compute the joint loss ∗ as Eq. (9).
8: Jointly optimize all parameters of the model using the average loss

 = mean(𝑠 + 𝑡).

4.6. Model training

We jointly train the model with the cross-entropy and contrastive
objectives for the source and target training data:

∗ = (1 − 𝛼)∗
𝐶𝐸 + 𝛼

(

∗
𝑆𝐶𝐿 + 1[∗=𝑡]∗

𝑇𝐶𝐿
)

; ∗∈ {𝑠, 𝑡}, (9)

where 𝛼 is a trade-off parameter, which is set to 0.5 in our experi-
ments. Algorithm 1 presents the training process of our approach. The
framework is alternately trained using stochastic gradient descent with
mini-batches [65]. For each mini-batch of target training data, we tra-
verse the source data by repeating Step 3–8 in Algorithm 1. Firstly, We
encode post-level representations, obtain the structure-derived event-
level representations and compute traditional classification losses for
source and target training data, respectively. After that, the data aug-
mentation is conducted on target training data for the computation of
the target-wise contrastive loss. And then the domain-adaptive con-
trastive loss is computed. In terms of Step 7, note that the training
objective for the target data considers the target-wise contrastive loss
in addition to the supervised contrastive loss and classification loss. We
set the number 𝐿 of the graph convolutional layer as 2. Parameters are
updated through back-propagation [66] with the Adam optimizer [67].
The learning rate is initialized as 0.0001, and the dropout rate is 0.2.
Early stopping [68] is applied to avoid overfitting.

5. Experiments

5.1. Datasets

The focus of this work, as well as in many previous studies [6,7,13,
41], is rumors on social media, instead of ‘‘fake news’’ strictly defined as
a news article published by a news outlet that is verifiably false [19,69].
To the best of our understanding, no public benchmarks currently
exist for identifying low-resource rumors featuring propagation tree
structures within tweets. In this study, we focus on the COVID-19
breaking event as a representative of a low-resource domain and gather
corresponding rumors and non-rumors from Twitter in English, Can-
tonese, and Arabic, as well as from Sina Weibo in Chinese. For the
data from Twitter (English-COVID19, Cantonese-COVID19 and Arabic-
COVID19), we resort two COVID-19 rumor datasets [15,70] of tweets,
which only contains textual claims without propagation threads. We
extend each claim by collecting its propagation thread via Twitter
academic API with a twarc2 package4 in python. For data from Sina
Weibo (Chinese-COVID19), data annotation similar to [12], a set of
rumorous claims is gathered from the Sina community management

4 https://twarc-project.readthedocs.io/en/latest/twarc2_en_us/

https://twarc-project.readthedocs.io/en/latest/twarc2_en_us/
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Table 1
Statistics of datasets.
Dataset Source Target

TWITTER WEIBO English-COVID19 Chinese-COVID19 Cantonese-COVID19 Arabic-COVID19

# of events 1154 4649 400 399 1481 218
# of tree nodes 60 409 1 956 449 406 185 26 687 68 490 99 786
# of non-rumors 579 2336 148 146 920 78
# of rumors 575 2313 252 253 561 140
Avg. time/tree 389 h 1007 h 2497 h 248 h 668 h 2154 h
Avg. depth/tree 11.67 49.85 143.03 4.31 9.98 35.54
Language English Chinese English Chinese Cantonese Arabic
center5 and non-rumorous claims by randomly filtering out the posts
that are not reported as rumors. Weibo API is utilized to collect all the
repost/reply messages towards each claim. All the datasets contain two
binary labels: Rumor and Non-rumor. The statistics of the six datasets
are illustrated in Table 1.

5.2. Experimental setup

We compare our model and several state-of-the-art baseline meth-
ods described below:

• (1) CNN: A CNN-based model for misinformation identifica-
tion [38] by framing the relevant posts as a fixed-length sequence;

• (2) RNN: A RNN-based rumor detection model [12] with GRU for
feature learning of relevant posts over time;

• (3) RvNN: A rumor detection approach based on tree-structured
recursive neural networks [6] that learn rumor representations
guided by the propagation structure;

• (4) PLAN: A transformer-based model [41] for rumor detection to
capture long-distance interactions between any pair of involved
tweets;

• (5) BiGCN: A GNN-based model [7] based on directed conversa-
tion trees to learn higher-level representations;

• (6) DANN-*: We employ and extend an existing few-shot learning
technique, domain-adversarial neural network [71], based on the
structure-based model where * could be RvNN, PLAN, and BiGCN;

• (7) UCLR-*: our proposed unified contrastive learning objectives
on top of RvNN, PLAN, or BiGCN;

• (8) UCLR: our proposed unified propagation-aware contrastive
transfer framework with multi-scale GCNs.

As the key insight to fill the low-resource gap is to relieve the limita-
tion imposed by the specific language resource dependency besides the
specific domain, in this work, we consider the most challenging case,
i.e., detecting events (i.e., target) from a new domain and language.
Specifically, we use TWITTER [13] and WEIBO [12] datasets as the
source data; Chinese-COVID19, English-COVID19, Cantonese-COVID19
and Arabic-COVID19 datasets as the target. We use accuracy and
macro-averaged F1, as well as class-specific F1 scores as the evaluation
metrics.

5.3. Implementation details

In our study, all of the experiments are conducted using a solitary
NVIDIA Tesla V100 GPU. The aggregate batch size is configured at
64, with equal batch sizes of 32 for both source and target samples.
Within the structure-based network, each node possesses hidden and
output dimensions set at 512 and 128, respectively. Since the focus in
this paper is primarily on better leveraging the contrastive learning for
domain and language adaptation on top of event-level representations,
we choose the off-the-shelf multilingual PLM XLM-R𝐵𝑎𝑠𝑒 (Layer number

12, Hidden dimension = 768, Attention head = 12, 270M params)

5 https://service.account.weibo.com/
8

as our sentence encoder for language-agnostic representations at the
post level. In order to perform five-fold cross-validation on the intended
dataset within the context of limited target resources, we sequentially
utilize each fold of the dataset for training, in conjunction with the
entire source dataset, and subsequently evaluate the model on the re-
maining target dataset. On average, our method requires approximately
3 h to complete one iteration of five-fold cross-validation. Our model
consists of 562,818 trainable parameters in total. The implementation
of our model is carried out using the PyTorch framework. We also make
our resources publicly available6.

5.4. Rumor detection performance

Table 2 shows the performance of our proposed method versus all
the compared methods on the Chinese-COVID19 and English-COVID19
test sets, respectively. And Table 3 further demonstrates the perfor-
mance of all the compared models on the Cantonese-COVID19 and
Arabic-COVID19 datasets. It is observed that the performances of the
baselines in the first group are undoubtedly subpar as a result of
neglecting inherent structural patterns. To make fair comparisons, all
baselines are employed with the same cross-lingual sentence encoder
of our framework as inputs. Other state-of-the-art baselines exploit
the structural property of community wisdom on social media, which
verifies the necessity of propagation structure representations aware in
our framework.

Due to the expressive strength of message-passing architectures,
PLAN and BiGCN beat RvNN among the structure-based baselines in
the second group, though just trained with a small amount of labeled
target data. The third group displays the outcomes for DANN-based
methods with pre-determined training datasets TWITTER and WEIBO.
Via generative adversarial nets [27] to capture cross-domain character-
istics from the source and target datasets, it enhances the performance
of structure-based baselines generally.

In contrast, our proposed UCLR-based framework on top of exist-
ing structure-based approaches in the fourth group achieves superior
performance among all their counterparts ranging from 24.5% (13.6%)
to 30.9% (18.0%) in terms of Macro F1 score on Chinese-COVID19
(English-COVID19) datasets in Table 2, and the similar phenomenon
could be observed in Table 3, which suggests their strong judgment on
low-resource rumors from different domains/languages. And the choice
of propagation structure representation is orthogonal to our proposed
framework that can be easily replaced with any existing structure-
based models without any other change to our unified contrastive
learning architecture. Meanwhile, it can be seen from Table 3 that, for
the same target data, our framework performs generally better when
utilizing WEIBO as the source data. The plausible reason might be that
WEIBO has a relatively larger amount of training data than TWITTER
so our domain-adaptive contrastive learning could make full use of the
well-resourced data for few-shot transfer.

Our perfect model UCLR performs the best among all the baselines,
even much better than the three UCLR-based variants, by mining effec-
tive clues simultaneously from the post semantics and the structural

6 https://github.com/DanielLin97/ACLR4RUMOR-NAACL2022

https://service.account.weibo.com/
https://github.com/DanielLin97/ACLR4RUMOR-NAACL2022
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Table 2
Rumor detection results on the target test datasets Chinese-COVID19 and English-COVID19.
Target (source) Chinese-COVID19 (TWITTER) English-COVID19 (WEIBO)

Model Acc. Mac-𝐹1 Rumor Non-rumor Acc. Mac-𝐹1 Rumor Non-rumor

𝐹1 𝐹1 𝐹1 𝐹1

CNN 0.445 0.402 0.476 0.328 0.498 0.389 0.528 0.249
RNN 0.463 0.414 0.498 0.329 0.510 0.388 0.533 0.243

RvNN 0.514 0.482 0.538 0.426 0.540 0.391 0.534 0.247
PLAN 0.532 0.496 0.578 0.414 0.573 0.423 0.549 0.298
BiGCN 0.569 0.508 0.586 0.429 0.616 0.415 0.577 0.252

DANN-RvNN 0.583 0.498 0.591 0.405 0.577 0.482 0.648 0.317
DANN-PLAN 0.601 0.507 0.606 0.409 0.593 0.471 0.574 0.369
DANN-BiGCN 0.629 0.561 0.616 0.506 0.618 0.510 0.676 0.344

UCLR-RvNN 0.801 0.743 0.844 0.642 0.676 0.618 0.740 0.496
UCLR-PLAN 0.849 0.816 0.871 0.760 0.724 0.651 0.769 0.533
UCLR-BiGCN 0.885 0.867 0.898 0.835 0.769 0.687 0.815 0.559

UCLR 0.895 0.883 0.916 0.851 0.773 0.692 0.827 0.556
Table 3
Rumor detection results on the target test datasets Cantonese-COVID19 and Arabic-COVID19. The symbol ⋅|⋅ for the transfer models denotes the different
performance from the models trained on different source datasets, TWITTER and WEIBO, respectively.
Target Cantonese-COVID19 Arabic-COVID19

Model Acc. Mac-𝐹1 Rumor Non-rumor Acc. Mac-𝐹1 Rumor Non-rumor

𝐹1 𝐹1 𝐹1 𝐹1

CNN 0.508 0.347 0.272 0.422 0.556 0.430 0.632 0.227
RNN 0.488 0.371 0.341 0.401 0.560 0.463 0.687 0.238

RvNN 0.535 0.451 0.334 0.568 0.565 0.467 0.694 0.239
PLAN 0.544 0.459 0.289 0.629 0.573 0.470 0.641 0.298
BiGCN 0.538 0.504 0.383 0.625 0.586 0.487 0.698 0.276

DANN-RvNN 0.499|0.564 0.465|0.539 0.359|0.437 0.570|0.641 0.612|0.612 0.547|0.547 0.713|0.713 0.381|0.381
DANN-PLAN 0.531|0.572 0.473|0.522 0.339|0.370 0.607|0.673 0.636|0.631 0.568|0.555 0.717|0.736 0.419|0.374
DANN-BiGCN 0.591|0.631 0.575|0.587 0.539|0.454 0.611|0.720 0.642|0.665 0.563|0.563 0.744|0.773 0.381|0.353

UCLR-RvNN 0.571|0.670 0.501|0.627 0.323|0.499 0.679|0.754 0.659|0.678 0.611|0.636 0.732|0.756 0.489|0.516
UCLR-PLAN 0.650|0.703 0.652|0.644 0.599|0.509 0.704|0.779 0.686|0.690 0.587|0.643 0.780|0.773 0.393|0.512
UCLR-BiGCN 0.685|0.713 0.656|0.692 0.569|0.631 0.742|0.752 0.673|0.714 0.618|0.665 0.759|0.782 0.477|0.548

UCLR 0.730|0.733 0.705|0.701 0.632|0.612 0.777|0.789 0.713|0.732 0.670|0.687 0.786|0.797 0.554|0.577
property via multi-scale encoding for conversation threads. Further-
more, the structure-based counterparts generally have more parameters
and complex structures (UCLR-BiGCN with total trainable parame-
ters 1,117,954) than Multi-scale GCNs of UCLR framework with total
trainable parameters 562,818. Although such complex structure-based
networks like BiGCN may show promising performance on the mono-
domain and mono-lingual training corpora, their generalization ability
in cross-domain and cross-lingual settings may be compromised. This
is because excessively complex models may overfit the training set
data, leading to inaccurate generalization to new target data. This
also justifies the complementary of our proposed Multi-scale GCNs
backbone and the UCLR training paradigm. In summary, the main
results indicate that the unified contrastive learning framework can
effectively transfer knowledge from the source to target data at the
event level, and substantiate our method is model-agnostic for different
structure-based networks. For a more clear qualitative analysis of the
effectiveness of the domain-adaptive contrastive learning [14] and the
target-wise contrastive learning, we further provide the ablative test
on the unified contrastive transfer framework UCLR in the following
subsection Section 5.5.

5.5. Ablative study

We perform ablation studies based on our proposed approach UCLR,
where the performance from models trained with TWITTER as the
source data is shown in Table 4 and that with WEIBO as the source data
is shown in Table 5. For the cross-domain and cross-lingual settings,
we use Chinese-COVID19, Cantonese-COVID19, and Arabic-COVID19
as the target data when TWITTER is utilized as the source data, and
9

Table 4
Results of the ablation study of UCLR with TWITTER as the source data.

Source TWITTER

Target Chinese-COVID19 Cantonese-COVID19 Arabic-COVID19

Model Acc. Mac-𝐹1 Acc. Mac-𝐹1 Acc. Mac-𝐹1

BiGCN(T) 0.569 0.508 0.538 0.504 0.586 0.487
BiGCN(S) 0.578 0.463 0.562 0.541 0.631 0.536
BiGCN(S,T) 0.693 0.472 0.576 0.558 0.655 0.539

DANN-BiGCN 0.629 0.561 0.591 0.575 0.642 0.563
ACLR-BiGCN 0.873 0.861 0.653 0.617 0.671 0.579
UCLR-BiGCN 0.885 0.867 0.685 0.656 0.673 0.618

UCLRAdv 0.890 0.871 0.718 0.697 0.709 0.616
UCLRDropout 0.888 0.869 0.721 0.702 0.699 0.580
UCLRDropEdge 0.895 0.883 0.730 0.705 0.713 0.670

we use English-COVID19, Cantonese-COVID19, and Arabic-COVID19 as
the target data when WEIBO is utilized as the source data.

Effect of Well-resourced Data. As demonstrated in Tables 4 and
5, the first group shows the results for the best-performed data-driven
baseline BiGCN. We observe that the model performs best if pre-
trained on source data and then fine-tuned on target training data
(i.e., BiGCN(S,T)), compared with the poor performance when trained
on either minor labeled target data only (i.e., BiGCN(T)) or well-
resourced source data (i.e., BiGCN(S)). This suggests that our hypoth-
esis of leveraging well-resourced source data to improve the low-
resource rumor detection on target data is feasible.

Effect of Feature Alignment. In the second group, the DANN-based

model makes better use of the source data to extract domain-agnostic
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Table 5
Results of the ablation study of UCLR with WEIBO as the source data.

Source WEIBO

Target Chinese-COVID19 Cantonese-COVID19 Arabic-COVID19

Model Acc. Mac-𝐹1 Acc. Mac-𝐹1 Acc. Mac-𝐹1

BiGCN(T) 0.616 0.415 0.538 0.504 0.586 0.487
BiGCN(S) 0.578 0.463 0.562 0.525 0.612 0.506
BiGCN(S,T) 0.693 0.472 0.581 0.538 0.633 0.519

DANN-BiGCN 0.618 0.510 0.631 0.587 0.665 0.563
ACLR-BiGCN 0.765 0.686 0.698 0.679 0.707 0.624
UCLR-BiGCN 0.769 0.687 0.713 0.692 0.714 0.665

UCLRAdv 0.768 0.691 0.729 0.697 0.710 0.658
UCLRDropout 0.771 0.689 0.727 0.683 0.718 0.676
UCLRDropEdge 0.773 0.692 0.733 0.701 0.732 0.687

features, which further leads to performance improvement. Our pro-
posed domain-Adaptive Contrastive Learning approach ACLR-BiGCN
has already achieved outstanding performance compared with other
baselines, which illustrates its effectiveness on domain and language
adaptation.

Effect of Target-wise Uniform Distribution. We further notice
hat our UCLR-BiGCN consistently outperforms all baselines and im-
roves the prediction performance of ACLR-BiGCN, suggesting that
raining model to preserve more rumor-indicative information on target
ata with more uniform distribution, could provide robust generaliza-
ion for more accurate rumor predictions, especially in low-resource
egimes.
Effect of Multi-scale GCNs. Our proposed UCLR frameworks with

ulti-scale GCNs in the third group generally perform better than the
CLR-BiGCN, which indicates the potential of Multi-scale GCNs as the
ackbone of our few-shot transfer framework for propagation struc-
ure representation learning, complementary to the proposed unified
ontrastive training paradigm.
Effect of Data Augmentation Strategies. In the third group, we

explore the effectiveness of different augmentation strategies to our
proposed Target-wise Contrastive Learning. We can observe that the
Graph Dropedge we employ as the data augmentation for the propaga-
tion structure is the most effective strategy, outperforming Adversarial
Attacks and Feature Dropout. This is probably because Grpah Dropedge
is more related to our propagation-aware framework since they are
directly operated on the Event-structural scale of Multi-scale GCNs and
change the structure of the propagation to produce hard examples.

5.6. Early detection

Early alerts of rumors are important to minimize their detrimental
impact. By setting detection checkpoints of ‘‘delays’’ that can be either
the count of reply posts or the time elapsed since the first posting, only
contents posted within the specified checkpoint parameters are avail-
able for model evaluation. The efficacy is assessed by Macro F1 score
attained at each respective checkpoint. To meet each checkpoint, we
incrementally scan test data in order of time until the pre-determined
time delay or post volume is reached.

Fig. 6 shows the performances of our approach versus ACLR-BiGCN
[14], DANN-BiGCN [71], BiGCN [7], PLAN [41], and RvNN [6] at
various deadlines.

We observe that the accuracies of all systems obviously increase
with elapsed time or post counts, our proposed UCLR approach outper-
forms other counterparts and baselines throughout the whole lifecycle,
which grows more quickly to supersede the other baselines and reaches
a relatively high Macro F1 score at a very early period after the initial
broadcast. One interesting phenomenon is that the early performance of
some baselines may fluctuate more or less. It is because with the prop-
agation of the claim, there is more semantic and structural information
10

but the noisy information is increased simultaneously. However, our
model has better steady rise of early detection performance than the
baselines. We speculate the reason is that our proposed framework
with multi-scale GCNs stands out for its simplicity and effectiveness
in simultaneously leveraging the different scales from semantic and
structural information, where integrating the claim information for the
claim-semantic scale could not only guard the consistency of topics
but also alleviate the potential noise resulting from the diffusion with
the event-structural scale. This simple yet effective approach proves
instrumental in the early stages of domain adaptation, complementary
with the unified contrastive training paradigm for enhancing rumor
detection. As a result, our method only needs about 50 posts and
around 4 h with TWITTER and WEIBO as source data, respectively, to
achieve the saturated performance, indicating the remarkably superior
early detection performance of our method.

5.7. Feature visualization

Fig. 7 shows the PCA visualization of learned target event-level
features obtained from traditional classification (left) and ACLR (right)
paradigms on Chinese-COVID19 data for analysis. The left figure rep-
resents model training with only classification loss, and the right figure
uses our proposed domain-Adaptive Contrastive Learning for training.
We observe that (1) due to the lack of sufficient training data, the
features extracted with the traditional training paradigm are entangled,
making it difficult to detect rumors in low-resource regimes; and (2)
our ACLR-based approach learns more discriminative representations to
improve low-resource rumor classification, reaffirming that our training
paradigm can effectively transfer knowledge to bridge the gap between
source and target data distribution resulting from different domains
and languages. Furthermore, Fig. 8 illustrates the difference in feature
visualization obtained from ACLR (left) and UCLR (right) paradigms on
Arabic-COVID19 data. It is observed that, besides the better decoupling
for different rumor-related labels, the UCLR achieves a relatively more
evenly distributed feature set for the target data compared with the
ACLR, which indicates the effectiveness of Target-wise Contrastive
Learning in contributing to the generalization ability of our framework
in low-resource regimes.

5.8. Case study of propagation structure

For a more comprehensive analysis of the propagation structure,
we present an example of correctly detected rumors with part of its
propagation structure. The visualization of tweets in Fig. 9 shows
that when a post challenges a rumor, it tends to elicit supportive or
affirming replies that confirm the denial. Conversely, when a post
endorses a rumor, it tends to trigger denials in its replies. Furthermore,
it is observed that a reply typically responds to its immediate parent
node rather than directly to the root claim. This observation aligns
with our motivation to explore the propagation structure of rumors
for representation learning. By adopting an undirected topology, the
structure can be naturally modeled to capture the signals indicative
of rumors and enhance representation by fully aggregating features
from all informative neighbors. This enables the adaptive propagation
of information association between nodes in the conversation thread
along responsive parent–child relationships.

Furthermore, we can observe that the informative posts should be
developed and extended around the content of the claim, i.e., the poten-
tial and implicit target to be checked. This highlights the significance
of the claim content to catch informative posts. Our proposed multi-
scale GCNs could integrate claim information from the claim-semantic
scale with the propagation thread from the event-structural scale, to
enrich the semantic context of replies and better guard the consistency

of topics for the correct prediction.
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Fig. 6. Early detection performance Macro F1 at different checkpoints of elapsed time (or posts count), where EngCovid, ChiCovid, CanCovid and AraCovid denote the
English-COVID19, Chinese-COVID19, Cantonese-COVID19 and Arabic-COVID19, respectively.
Fig. 7. Visualization of target event-level representation distribution for traditional classification (left) and ACLR (right) paradigms on Chinese-COVID19 data.
Fig. 8. Visualization of target event-level representation distribution for ACLR (left) and UCLR (right) paradigms on Arabic-COVID19 data.
5.9. Error analysis

In this section, to gain deeper insights into our model’s behavior
and to provide groundwork for future investigations, we perform an
error analysis specifically focusing on the misclassified rumor exam-
ples by our proposed framework. This analysis aims to illuminate
the nuances behind erroneous predictions, contributing to a more
11
comprehensive understanding of the model’s performance with the
propagation structure.

We found that the major error exists in that our framework still
cannot perfectly handle the instance in which few users’ engagements
are available. In real-world scenarios, certain users opt to reshare con-
tent without appending their own opinions or comments. This behavior
presents a challenge for our model, particularly when engagements
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Fig. 9. A sample case of correctly detected rumors of our model. We show important tweets in the propagation structure and truncate others.
Fig. 10. A sample case of wrongly detected rumors of our model.

from a limited number of users are available. This scenario mirrors the
complexity of early rumor detection. While our model demonstrates
impressive performance in early rumor detection, it encounters inac-
curacies stemming from situations where users predominantly retweet
claims by attaching emojis with ambiguous meanings, but lack addi-
tional text of opinions, as shown in Fig. 10. Thus we plan to investigate
the role of non-textual media such as images or emojis in the effective-
ness of detecting rumors. Additionally, an intriguing observation is that
users may reply to their own claims during information propagation. To
enhance our modeling approach for novel social networks, accounting
for these distinct behaviors (e.g., retweets or replies originating from
the node posting the claim itself) is crucial for more heuristic rumor
propagation analysis.

5.10. Effect of trade-off hyper-parameter

To study the effects on performance (Macro F1 score) of the trade-
off hyper-parameter in our training paradigm, we conduct qualitative
analysis under UCLR architecture (Fig. 11). For the target data Chinese-
COVID19 and Cantonese-COVID19, we use TWITTER as the source
data; in terms of English-COVID19 and Arabic-COVID19, we use WEIBO
as the source data. Since the platform for collecting Chinese-COVID19
data is Sina Weibo while the platform for the other three datasets is
Twitter, there will be a large gap between the model’s performance on
Chinese-COVID19 data and its performance on the other three datasets.
We can see that 𝛼 = 0.5 achieves the best performance while the point
where 𝛼 = 0.3 also has good performance. Looking at the overall trend,
the performance fluctuates more or less as the value of 𝛼 grows. We
conjecture that this is because the unified contrastive objective, while
optimizing the representation distribution, compromises the mapping
relationship with labels. Such a multi-task paradigm means optimizing
the traditional classification loss and the unified contrastive loss simul-
taneously. This setting leads to mutual interference between two tasks,
which affects the convergence effect. This phenomenon points out the
direction for our further research in the future.

5.11. Discussion about low-resource settings

To highlight the low-resource settings in our experiments, we an-
alyze our proposed framework in this section using mono-lingual and
12
Table 6
Rumor detection results of our proposed framework in different low-
resource settings. Cross-D&L denotes the cross-domain and cross-lingual
settings and Cross-D denotes the cross-domain and mono-lingual settings.
Target Chinese-COVID19 English-COVID19

Settings Acc. Mac-𝐹1 Acc. Mac-𝐹1

Cross-D&L 0.895 0.883 0.773 0.692
Cross-D 0.899 0.864 0.752 0.645

cross-lingual source datasets. Considering the cross-domain and cross-
lingual settings in Table 2 of the main experiments, we also conduct an
experiment in cross-domain and mono-lingual settings. Specifically, for
the Chinese-COVID19 as the target data, we utilize the WEIBO dataset
as the source data with rich annotations. In terms of English-COVID19,
we set the TWITTER dataset as the source data. Table 6 depicted
the results in different low-resource settings. The results show that
our model generally performs better in both cross-domain and cross-
lingual settings compared to just cross-domain, revealing that relieving
language resource dependency is crucial in addressing the low-resource
gap. Our proposed framework, the unified propagation-aware con-
trastive transfer, can alleviate the low-resource issue in rumor detection
and reduce dependence on domain and language-specific annotated
datasets.

6. Conclusion and future work

In this work, we propose a unified contrastive transfer framework
with propagation structure to bridge low-resource gaps for rumor detec-
tion on social media by adapting social contextual features learned from
well-resourced data to that of the low-resource breaking events. For
the novel Low-Resource Rumor Detection task, our domain-adaptive
contrastive learning aligns identical features from different domains
and/or languages. Furthermore, we propose target-wise contrastive
learning with three data augmentation strategies to optimize repre-
sentations of target data more uniformly by distinguishing individ-
ual target training samples, for better generalization to unseen target
data. Results on four real-world datasets show that: (1) our method is
more effective and robust compared with state-of-the-art baselines; and
(2) our extended unified contrastive transfer framework with target-
wise contrastive learning makes further improvements over the orig-
inal domain-adaptive contrastive model. We also compare different
data augmentation strategies for target-wise contrastive learning and
provide comprehensive analysis for interpreting how our approach
works.

For future work, we will explore the following directions: (1) We
will investigate the pre-training paradigm in contrastive manners and
then fine-tune the model using classification loss, which may further
enhance the model’s performance and stability; (2) Besides the textual
information of the relevant posts, we will incorporate more information
types (e.g., user profiles, post time, etc.) for improving our unified
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Fig. 11. Effect of trade-off hyper-parameter 𝛼 between Classification and Contrastive Objectives.
ontrastive training paradigm; (3) To deepen the interpretability of
ur framework, we aim to further extract explicit token-level insights
y elucidating the specific textual features learned. This will involve
nhancing the cross-lingual sentence encoder within our approach; (4)
e intend to leverage more datasets with abundant annotation and

dapt our model to other domains and minority languages since our
odel has explicitly conquered the restriction of both domain and

anguage usage in distinct datasets.
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